Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
4.
Multimed Tools Appl ; 82(3): 3581-3604, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35855773

RESUMO

This work proposes a novel method based on a pseudo-parabolic diffusion process to be employed for texture recognition. The proposed operator is applied over a range of time scales giving rise to a family of images transformed by nonlinear filters. Therefore each of those images are encoded by a local descriptor (we use local binary patterns for that purpose) and they are summarized by a simple histogram, yielding in this way the image feature vector. Three main novelties are presented in this manuscript: (1) The introduction of a pseudo-parabolic model associated with the signal component of binary patterns to the process of texture recognition and a real-world application to the problem of identifying plant species based on the leaf surface image. (2) We also introduce a simple and efficient discrete pseudo-parabolic differential operator based on finite differences as texture descriptors. While the work in [26] uses complete local binary patterns, here we use the original version of the local binary pattern operator. (3) We also discuss, in more general terms, the possibilities of exploring pseudo-parabolic models for image analysis as they balance two types of processing that are fundamental for pattern recognition, i.e., they smooth undesirable details (possibly noise) at the same time that highlight relevant borders and discontinuities anisotropically. Besides the practical application, the proposed approach is also tested on the classification of well established benchmark texture databases. In both cases, it is compared with several state-of-the-art methodologies employed for texture recognition. Our proposal outperforms those methods in terms of classification accuracy, confirming its competitiveness. The good performance can be justified to a large extent by the ability of the pseudo-parabolic operator to smooth possibly noisy details inside homogeneous regions of the image at the same time that it preserves discontinuities that convey critical information for the object description. Such results also confirm that model-based approaches like the proposed one can still be competitive with the omnipresent learning-based approaches, especially when the user does not have access to a powerful computational structure and a large amount of labeled data for training.

5.
Comput Biol Med ; 81: 1-10, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27992735

RESUMO

The Odontogenic keratocyst (OKC) is a cystic lesion of the jaws, which has high growth and recurrence rates compared to other cysts of the jaws (for instance, radicular cyst, which is the most common jaw cyst type). For this reason OKCs are considered by some to be benign neoplasms. There exist two sub-types of OKCs (sporadic and syndromic) and the ability to discriminate between these sub-types, as well as other jaw cysts, is an important task in terms of disease diagnosis and prognosis. With the development of digital pathology, computational algorithms have become central to addressing this type of problem. Considering that only basic feature-based methods have been investigated in this problem before, we propose to use a different approach (the Bouligand-Minkowski descriptors) to assess the success rates achieved on the classification of a database of histological images of the epithelial lining of these cysts. This does not require the level of abstraction necessary to extract histologically-relevant features and therefore has the potential of being more robust than previous approaches. The descriptors were obtained by mapping pixel intensities into a three dimensional cloud of points in discrete space and applying morphological dilations with spheres of increasing radii. The descriptors were computed from the volume of the dilated set and submitted to a machine learning algorithm to classify the samples into diagnostic groups. This approach was capable of discriminating between OKCs and radicular cysts in 98% of images (100% of cases) and between the two sub-types of OKCs in 68% of images (71% of cases). These results improve over previously reported classification rates reported elsewhere and suggest that Bouligand-Minkowski descriptors are useful features to be used in histopathological images of these cysts.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Microscopia/métodos , Cistos Odontogênicos/patologia , Reconhecimento Automatizado de Padrão/métodos , Fractais , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
6.
Chaos ; 22(4): 043103, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23278038

RESUMO

The present work shows a novel fractal dimension method for shape analysis. The proposed technique extracts descriptors from a shape by applying a multi-scale approach to the calculus of the fractal dimension. The fractal dimension is estimated by applying the curvature scale-space technique to the original shape. By applying a multi-scale transform to the calculus, we obtain a set of descriptors which is capable of describing the shape under investigation with high precision. We validate the computed descriptors in a classification process. The results demonstrate that the novel technique provides highly reliable descriptors, confirming the efficiency of the proposed method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...