Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-26006299

RESUMO

We evaluated the role of the first pair of gill arches in the control of cardiorespiratory responses to normoxia and hypoxia in the air-breathing catfish, Clarias gariepinus. An intact group (IG) and an experimental group (EG, bilateral excision of first gill arch) were submitted to graded hypoxia, with and without access to air. The first pair of gill arches ablations reduced respiratory surface area and removed innervation by cranial nerve IX. In graded hypoxia without access to air, both groups displayed bradycardia and increased ventilatory stroke volume (VT), and the IG showed a significant increase in breathing frequency (fR). The EG exhibited very high fR in normoxia that did not increase further in hypoxia, this was linked to reduced O2 extraction from the ventilatory current (EO2) and a significantly higher critical O2 tension (PcO2) than the IG. In hypoxia with access to air, only the IG showed increased air-breathing, indicating that the first pair of gill arches excision severely attenuated air-breathing responses. Both groups exhibited bradycardia before and tachycardia after air-breaths. The fH and gill ventilation amplitude (VAMP) in the EG were overall higher than the IG. External and internal NaCN injections revealed that O2 chemoreceptors mediating ventilatory hypoxic responses (fR and VT) are internally oriented. The NaCN injections indicated that fR responses were mediated by receptors predominantly in the first pair of gill arches but VT responses by receptors on all gill arches. Receptors eliciting cardiac responses were both internally and externally oriented and distributed on all gill arches or extra-branchially. Air-breathing responses were predominantly mediated by receptors in the first pair of gill arches. In conclusion, the role of the first pair of gill arches is related to: (a) an elevated EO2 providing an adequate O2 uptake to maintain the aerobic metabolism during normoxia; (b) a significant bradycardia and increased fAB elicited by externally oriented O2 chemoreceptors; (c) increase in the ventilatory variables (fR and VAMP) stimulated by internally oriented O2 chemoreceptors.


Assuntos
Ar , Peixes-Gato/fisiologia , Coração/fisiologia , Hipóxia/fisiopatologia , Respiração , Animais
2.
J Comp Physiol B ; 181(7): 905-16, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21512744

RESUMO

The African catfish, Clarias gariepinus, possesses a pair of suprabranchial chambers located in the dorsal-posterior part of the branchial cavity having extensions from the upper parts of the second and fourth gill arches, forming the arborescent organs. This structure is an air-breathing organ (ABO) and allows aerial breathing (AB). We evaluated its cardiorespiratory responses to aquatic hypoxia. To determine the mode of air-breathing (obligate or accessory), fish had the respiratory frequency (f (R)) monitored and were subjected to normoxic water (PwO(2) = 140 mmHg) without becoming hyperactive for 30 h. During this period, all fish survived without displaying evidences of hyperactivity and maintained unchanged f (R), confirming that this species is a facultative air-breather. Its aquatic O(2) uptake ([Formula: see text]) was maintained constant down to a critical PO(2) (PcO(2)) of 60 mmHg, below which [Formula: see text] declined linearly with further reductions of inspired O(2) tension (PiO(2)). Just above the PcO(2) the ventilatory tidal volume (V (T)) increased significantly along with gill ventilation ([Formula: see text]), while f (R) changed little. Consequently, the water convection requirement [Formula: see text] increased steeply. This threshold applied to a cardiac response that included reflex bradycardia. AB was initiated at PiO(2) = 140 mmHg (normoxia) and air-breathing episodes increased linearly with more severe hypoxia, being significantly higher at PiO(2) tensions below the PcO(2). Air-breathing episodes were accompanied by bradycardia pre air-breath, to tachycardia post air-breath.


Assuntos
Peixes-Gato , Doenças dos Peixes/metabolismo , Coração/fisiologia , Hipóxia/veterinária , Mecânica Respiratória , Ar , Animais , Doenças dos Peixes/patologia , Brânquias/fisiologia , Frequência Cardíaca/fisiologia , Hipóxia/metabolismo , Hipóxia/patologia , Consumo de Oxigênio , Ventilação Pulmonar/fisiologia , Respiração , Fatores de Tempo
3.
Artigo em Inglês | MEDLINE | ID: mdl-19430799

RESUMO

The role of the vagus nerve in determining heart rate (f(H)) and cardiorespiratory interactions was investigated in a neotropical fish, Piaractus mesopotamicus. During progressive hypoxia f(H) initially increased, establishing a 1:1 ratio with ventilation rate (f(R)). Subsequently there was a hypoxic bradycardia. Injection of atropine abolished a normoxic inhibitory tonus on the heart and the f(H) adjustments during progressive hypoxia, confirming that they are imposed by efferent parasympathetic inputs via the vagus nerve. Efferent activity recorded from the cardiac vagus in lightly anesthetized normoxic fish included occasional bursts of activity related to spontaneous changes in ventilation amplitude, which increased the cardiac interval. Restricting the flow of aerated water irrigating the gills resulted in increased respiratory effort and bursts of respiration-related activity in the cardiac vagus that seemed to cause f(H) to couple with f(R). Cell bodies of cardiac vagal pre-ganglionic neurons were located in two distinct groups within the dorsal vagal motor column having an overlapping distribution with respiratory motor-neurons. A small proportion of cardiac vagal pre-ganglionic neurons (2%) was in scattered positions in the ventrolateral medulla. This division of cardiac vagal pre-ganglionic neurons into distinct motor groups may relate to their functional roles in determining cardiorespiratory interactions.


Assuntos
Peixes/anatomia & histologia , Frequência Cardíaca/fisiologia , Bulbo/fisiologia , Respiração , Nervo Vago/fisiologia , Potenciais de Ação/fisiologia , Vias Aferentes/fisiologia , Animais , Estimulação Elétrica , Eletrocardiografia/métodos , Feminino , Peixes/fisiologia , Brânquias/fisiologia , Coração/inervação , Coração/fisiologia , Hipóxia/fisiopatologia , Masculino , Bulbo/anatomia & histologia
4.
J Exp Biol ; 212(Pt 7): 906-13, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19282487

RESUMO

The role of the parasympathetic nervous system, operating via the vagus nerve, in determining heart rate (f(H)) and cardiorespiratory interactions was investigated in the neotropical fish Piaractus mesopotamicus. Motor nuclei of branches of cranial nerves VII, IX and X, supplying respiratory muscles and the heart, have an overlapping distribution in the brainstem, while the Vth motor nucleus is more rostrally located. Respiration-related efferent activity in the cardiac vagus appeared to entrain the heart to ventilation. Peripheral stimulation of the cardiac vagus with short bursts of electrical stimuli entrained the heart at a ratio of 1:1 over a range of frequencies, both below and sometimes above the intrinsic heart rate. Alternatively, at higher bursting frequencies the induced f(H) was slower than the applied stimulus, being recruited by a whole number fraction (1:2 to 1:6) of the stimulus frequency. These effects indicate that respiration-related changes in f(H) in pacu are under direct, beat-to-beat vagal control. Central burst stimulation of respiratory branches of cranial nerves VII, IX and X also entrained the heart, which implies that cardiorespiratory interactions can be generated reflexly. Central stimulation of the Vth cranial nerve was without effect on heart rate, possibly because its central projections do not overlap with cardiac vagal preganglionic neurons in the brainstem. However, bursts of activity recorded from the cardiac vagus were concurrent with bursts in this nerve, suggesting that cardiorespiratory interactions can arise within the CNS, possibly by irradiation from a central respiratory pattern generator, when respiratory drive is high.


Assuntos
Peixes/fisiologia , Frequência Cardíaca/fisiologia , Sistema Nervoso Parassimpático/fisiologia , Mecânica Respiratória/fisiologia , Nervo Vago/fisiologia , Animais , Vias Eferentes/fisiologia , Estimulação Elétrica , Nervo Vago/anatomia & histologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-17680247

RESUMO

This study examined the location and distribution of O(2) chemoreceptors involved in cardio-respiratory responses to hypoxia in the neotropical teleost, the pacu (Piaractus mesopotamicus). Intact fish and fish experiencing progressive gill denervation by selective transection of cranial nerves IX and X were exposed to gradual hypoxia and submitted to intrabuccal and intravenous injections of NaCN while their heart rate, ventilation rate and ventilation amplitude were measured. The chemoreceptors producing reflex bradycardia were confined to, but distributed along all gill arches, and were sensitive to O(2) levels in the water and the blood. Ventilatory responses to all stimuli, though modified, continued following gill denervation, however, indicating the presence of internally and externally oriented receptors along all gill arches and either in the pseudobranch or at extra-branchial sites. Chemoreceptors located on the first pair of gill arches and innervated by the glossopharyngeal nerve appeared to attenuate the cardiac and respiratory responses to hypoxia. The data indicate that the location and distribution of cardio-respiratory O(2) receptors are not identical to those in tambaqui (Colossoma macropomum) despite their similar habitats and close phylogenetic lineage, although the differences between the two species could reduce to nothing more than the presence or absence of the pseudobranch.


Assuntos
Células Quimiorreceptoras/fisiologia , Peixes/fisiologia , Brânquias/fisiologia , Hipóxia/fisiopatologia , Animais , Pressão Sanguínea/fisiologia , Fenômenos Fisiológicos Cardiovasculares , Brânquias/inervação , Frequência Cardíaca/fisiologia , Oxigênio/metabolismo , Reflexo/fisiologia , Fenômenos Fisiológicos Respiratórios , Cianeto de Sódio/farmacologia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...