Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 8(10): 3160-5, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18798685

RESUMO

Scanning tunneling microscopy (STM) images of self-assembled monolayers of close-packed alkane chains on highly oriented pyrolitic graphite often display an alternating bright and dark spot pattern. Classical simulations suggest that a tilt of the alkane backbone is unstable and, therefore, unlikely to account for the contrast variation. First principles calculations based on density functional theory show that an electronic effect can explain the observed alternation. Furthermore, the asymmetric spot pattern associated with the minimum energy alignment is modulated depending on the registry of the alkane adsorbate relative to the graphite surface, explaining the characteristic moiré pattern that is often observed in STM images with close packed alkyl assemblies.

2.
Langmuir ; 22(24): 10003-8, 2006 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-17106992

RESUMO

This study details a scanning tunneling microscopy investigation into the mechanism of chiral grain growth in highly ordered, self-assembled monolayer films composed of cruciform pi-systems. Although the molecules themselves are achiral, when they adsorb from solution onto graphite, they adopt a gear-like conformation that, by virtue of the surface, is chiral. These handed subunits arrange themselves into enantiomeric two-dimensional domains. The unique finding from this study is that Ostwald ripening is frustrated between domain boundaries that are of opposite chirality because direct interconversion between the chiral units on the surface is energetically inhibited.

3.
Proc Natl Acad Sci U S A ; 102(15): 5315-22, 2005 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-15758073

RESUMO

A simple model system for the 2D self-assembly of functionalized organic molecules on surfaces was examined in a concerted experimental and theoretical effort. Monolayers of 1-halohexanes were formed through vapor deposition onto graphite surfaces in ultrahigh vacuum. Low-temperature scanning tunneling microscopy allowed the molecular conformation, orientation, and monolayer crystallographic parameters to be determined. Essentially identical noncommensurate monolayer structures were found for all 1-halohexanes, with differences in image contrast ascribed mainly to electronic factors. Energy minimizations and molecular dynamics simulations reproduced structural parameters of 1-bromohexane monolayers quantitatively. An analysis of interactions driving the self-assembly process revealed the crucial role played by small but anisotropic electrostatic forces associated with the halogen substituent. While alkyl chain dispersion interactions drive the formation of a close-packed adsorbate monolayer, electrostatic headgroup forces are found to compete successfully in the control of both the angle between lamella and backbone axes and the angle between surface and backbone planes. This competition is consistent with energetic tradeoffs apparent in adsorption energies measured in earlier temperature-programmed desorption studies. In accordance with the higher degree of disorder observed in scanning tunneling microscopy images of 1-fluorohexane, theoretical simulations show that electrostatic forces associated with the fluorine substituent are sufficiently strong to upset the delicate balance of interactions required for the formation of an ordered monolayer. The detailed dissection of the driving forces for self-assembly of these simple model systems is expected to aid in the understanding of the more complex self-assembly processes taking place in the presence of solvent.

4.
J Phys Chem B ; 109(10): 4520-32, 2005 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-16851528

RESUMO

Self-assembled monolayers of chrysene and indene on graphite have been observed and characterized individually with scanning tunneling microscopy (STM) at 80 K under low-temperature, ultrahigh vacuum conditions. These molecules are small, polycyclic aromatic hydrocarbons (PAHs) containing no alkyl chains or functional groups that are known to promote two-dimensional self-assembly. Energy minimization and molecular dynamics simulations performed for small groups of the molecules physisorbed on graphite provide insight into the monolayer structure and forces that drive the self-assembly. The adsorption energy for a single chrysene molecule on a model graphite substrate is calculated to be 32 kcal/mol, while that for indene is 17 kcal/mol. Two distinct monolayer structures have been observed for chrysene, corresponding to high- and low-density assemblies. High-resolution STM images taken of chrysene with different bias polarities reveal distinct nodal structure that is characteristic of the molecular electronic state(s) mediating the tunneling process. Density functional theory calculations are utilized in the assignment of the observed electronic states and possible tunneling mechanism. These results are discussed within the context of PAH and soot particle formation, because both chrysene and indene are known reaction products from the combustion of small hydrocarbons. They are also of fundamental interest in the fields of nanotechnology and molecular electronics.

5.
J Chem Phys ; 120(19): 9033-46, 2004 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-15267838

RESUMO

The conformational isomerization dynamics of melatonin and 5-methoxy N-acetyltryptophan methyl amide (5-methoxy NATMA) have been studied using the methods of IR-UV hole-filling spectroscopy and IR-induced population transfer spectroscopy. Using these techniques, single conformers of melatonin were excited via a well-defined NH stretch fundamental with an IR pump laser. This excess energy was used to drive conformational isomerization. By carrying out the infrared excitation early in a supersonic expansion, the excited molecules were re-cooled into their zero-point levels, partially re-filling the hole created in the ground state population of the excited conformer, and creating gains in population of the other conformers. These changes in population were detected using laser-induced fluorescence downstream in the expansion via an UV probe laser. The isomerization quantum yields for melatonin show some conformation specificity but no hint of vibrational mode specificity. In 5-methoxy NATMA, no isomerization was observed out of the single conformational well populated in the expansion in the absence of the infrared excitation. In order to study the dependence of the isomerization on the cooling rate, the experimental arrangement was modified so that faster cooling conditions could be studied. In this arrangement, the pump and probe lasers were overlapped in space in the high density region of the expansion, and the time dependence of the zero-point level populations of the conformers was probed following selective excitation of a single conformation. The analysis needed to extract isomerization quantum yields from the timing scans was developed and applied to the melatonin timing scans. Comparison between the frequency and time domain isomerization quantum yields under identical experimental conditions produced similar results. Under fast cooling conditions, the product quantum yields were shifted from their values under standard conditions. The results for melatonin are compared with those for N-acetyl tryptophan methyl amide.


Assuntos
Melatonina/química , Melatonina/efeitos da radiação , Modelos Químicos , Modelos Moleculares , Triptofano/análogos & derivados , Simulação por Computador , Raios Infravermelhos , Isomerismo , Conformação Molecular/efeitos da radiação , Triptofano/química , Triptofano/efeitos da radiação , Vibração
6.
J Am Chem Soc ; 124(34): 10236-47, 2002 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-12188688

RESUMO

The hormone melatonin (N-acetyl-5-methoxytryptamine) is an indole derivative with a flexible peptide-like side chain attached at the C3 position. Using a combination of two-color resonant two-photon ionization (2C-R2PI), laser-induced fluorescence excitation (LIF), resonant ion-dip infrared spectroscopy (RIDIRS), fluorescence-dip infrared spectroscopy (FDIRS), and UV-UV hole-burning spectroscopy, the conformational preferences of melatonin in a molecular beam have been determined. Three major trans-amide conformers and two minor cis-amide conformers have been identified in the R2PI spectrum and characterized with RIDIRS and FDIRS. Structural assignments are made using the infrared spectra in concert with density functional theory and localized MP2 calculations. Observation of cis-amide melatonin conformers in the molecular beam, despite the large energy gap (approximately 3 kcal/mol) between trans- and cis-amides, is striking because there are at least nine lower-energy trans-amide minima that are not detected. The implications of this observation for cooling and trapping conformational population in a supersonic expansion are discussed.


Assuntos
Melatonina/química , Isomerismo , Modelos Moleculares , Conformação Molecular , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta , Relação Estrutura-Atividade , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...