Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood Adv ; 7(6): 1033-1039, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36490356

RESUMO

For some molecular players in red blood cells (RBCs), the functional indications and molecular evidence are discrepant. One such protein is transient receptor potential channel of canonical subfamily, member 6 (TRPC6). Transcriptome analysis of reticulocytes revealed the presence of TRPC6 in mouse RBCs and its absence in human RBCs. We transfused TRPC6 knockout RBCs into wild-type mice and performed functional tests. We observed the "rescue" of TRPC6 within 10 days; however, the "rescue" was slower in splenectomized mice. The latter finding led us to mimic the mechanical challenge with the cantilever of an atomic force microscope and simultaneously carry out imaging by confocal (3D) microscopy. We observed the strong interaction of RBCs with the opposed surface at around 200 pN and the formation of tethers. The results of both the transfusion experiments and the atomic force spectroscopy suggest mechanically stimulated protein transfer to RBCs as a protein source in the absence of the translational machinery. This protein transfer mechanism has the potential to be utilized in therapeutic contexts, especially for hereditary diseases involving RBCs, such as hereditary xerocytosis or Gárdos channelopathy.


Assuntos
Anemia Hemolítica Congênita , Eritrócitos , Animais , Humanos , Camundongos , Anemia Hemolítica Congênita/metabolismo , Transfusão de Sangue , Eritrócitos/metabolismo , Hidropisia Fetal/metabolismo , Canal de Cátion TRPC6/metabolismo
2.
Biophys J ; 121(20): 3950-3961, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36056556

RESUMO

Dendritic cells use amoeboid migration to pass through narrow passages in the extracellular matrix and confined tissue in search for pathogens and to reach the lymph nodes and alert the immune system. Amoeboid migration is a migration mode that, instead of relying on cell adhesion, is based on mechanical resilience and friction. To better understand the role of intermediate filaments in ameboid migration, we studied the effects of vimentin on the migration of dendritic cells. We show that the lymph node homing of vimentin-deficient cells is reduced in our in vivo experiments in mice. Lack of vimentin also reduces the cell stiffness, the number of migrating cells, and the migration speed in vitro in both 1D and 2D confined environments. Moreover, we find that lack of vimentin weakens the correlation between directional persistence and migration speed. Thus, vimentin-expressing dendritic cells move faster in straighter lines. Our numerical simulations of persistent random search in confined geometries verify that the reduced migration speed and the weaker correlation between the speed and direction of motion result in longer search times to find regularly located targets. Together, these observations show that vimentin enhances the ameboid migration of dendritic cells, which is relevant for the efficiency of their random search for pathogens.


Assuntos
Amoeba , Filamentos Intermediários , Camundongos , Animais , Filamentos Intermediários/metabolismo , Vimentina , Movimento Celular , Adesão Celular , Células Dendríticas/metabolismo
4.
PLoS One ; 16(7): e0254165, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234360

RESUMO

The cellular cortex is an approximately 200-nm-thick actin network that lies just beneath the cell membrane. It is responsible for the mechanical properties of cells, and as such, it is involved in many cellular processes, including cell migration and cellular interactions with the environment. To develop a clear view of this dense structure, high-resolution imaging is essential. As one such technique, electron microscopy, involves complex sample preparation procedures. The final drying of these samples has significant influence on potential artifacts, like cell shrinkage and the formation of artifactual holes in the actin cortex. In this study, we compared the three most used final sample drying procedures: critical-point drying (CPD), CPD with lens tissue (CPD-LT), and hexamethyldisilazane drying. We show that both hexamethyldisilazane and CPD-LT lead to fewer artifactual mesh holes within the actin cortex than CPD. Moreover, CPD-LT leads to significant reduction in cell height compared to hexamethyldisilazane and CPD. We conclude that the final drying procedure should be chosen according to the reduction in cell height, and so CPD-LT, or according to the spatial separation of the single layers of the actin cortex, and so hexamethyldisilazane.


Assuntos
Actinas/química , Liofilização/métodos , Microscopia Eletrônica de Varredura/métodos , Compostos de Organossilício/química , Artefatos , Células Cultivadas , Dessecação/métodos , Humanos , Manejo de Espécimes/métodos
5.
FASEB J ; 35(5): e21582, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33835502

RESUMO

The rapid development of advanced microscopy techniques over recent decades has significantly increased the quality of imaging and our understanding of subcellular structures, such as the organization of the filaments of the cytoskeleton using fluorescence and electron microscopy. However, these recent improvements in imaging techniques have not been matched by similar development of techniques for computational analysis of the images of filament networks that can now be obtained. Hence, for a wide range of applications, reliable computational analysis of such two-dimensional methods remains challenging. Here, we present a new algorithm for tracing of filament networks. This software can extract many important parameters from grayscale images of filament networks, including the mesh hole size, and filament length and connectivity (also known as Coordination Number). In addition, the method allows sub-networks to be distinguished in two-dimensional images using intensity thresholding. We show that the algorithm can be used to analyze images of cytoskeleton networks obtained using different advanced microscopy methods. We have thus developed a new improved method for computational analysis of two-dimensional images of filamentous networks that has wide applications for existing imaging techniques. The algorithm is available as open-source software.


Assuntos
Citoesqueleto de Actina/metabolismo , Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Microscopia Eletrônica de Varredura/métodos , Microtúbulos/metabolismo , Pseudópodes/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Células Cultivadas , Humanos , Microtúbulos/ultraestrutura , Pseudópodes/ultraestrutura , Epitélio Pigmentado da Retina/ultraestrutura
7.
Phys Rev Lett ; 125(6): 068101, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32845697

RESUMO

Shape, dynamics, and viscoelastic properties of eukaryotic cells are primarily governed by a thin, reversibly cross-linked actomyosin cortex located directly beneath the plasma membrane. We obtain time-dependent rheological responses of fibroblasts and MDCK II cells from deformation-relaxation curves using an atomic force microscope to access the dependence of cortex fluidity on prestress. We introduce a viscoelastic model that treats the cell as a composite shell and assumes that relaxation of the cortex follows a power law giving access to cortical prestress, area-compressibility modulus, and the power law exponent (fluidity). Cortex fluidity is modulated by interfering with myosin activity. We find that the power law exponent of the cell cortex decreases with increasing intrinsic prestress and area-compressibility modulus, in accordance with previous finding for isolated actin networks subject to external stress. Extrapolation to zero tension returns the theoretically predicted power law exponent for transiently cross-linked polymer networks. In contrast to the widely used Hertzian mechanics, our model provides viscoelastic parameters independent of indenter geometry and compression velocity.


Assuntos
Actinas/química , Fibroblastos/química , Fibroblastos/citologia , Modelos Biológicos , Actinas/fisiologia , Animais , Fenômenos Biomecânicos , Linhagem Celular , Membrana Celular/química , Membrana Celular/fisiologia , Força Compressiva , Cães , Elasticidade , Microscopia de Força Atômica , Miosinas/química , Miosinas/fisiologia , Reologia/métodos , Viscosidade
8.
Sci Rep ; 7(1): 7928, 2017 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-28801570

RESUMO

Plasma proteins such as fibrinogen induce the aggregation of red blood cells (RBC) into rouleaux, which are responsible for the pronounced shear thinning behavior of blood, control the erythrocyte sedimentation rate (ESR) - a common hematological test - and are involved in many situations of physiological relevance such as structuration of blood in the microcirculation or clot formation in pathological situations. Confocal microscopy is used to characterize the shape of RBCs within rouleaux at equilibrium as a function of macromolecular concentration, revealing the diversity of contact zone morphology. Three different configurations that have only been partly predicted before are identified, namely parachute, male-female and sigmoid shapes, and quantitatively recovered by numerical simulations. A detailed experimental and theoretical analysis of clusters of two cells shows that the deformation increases nonlinearly with the interaction energy. Models indicate a forward bifurcation in which the contacting membrane undergoes a buckling instability from a flat to a deformed contact zone at a critical value of the interaction energy. These results are not only relevant for the understanding of the morphology and stability of RBC aggregates, but also for a whole class of interacting soft deformable objects such as vesicles, capsules or cells in tissues.


Assuntos
Forma Celular , Agregação Eritrocítica , Eritrócitos/citologia , Eritrócitos/metabolismo , Fibrinogênio/metabolismo , Voluntários Saudáveis , Humanos , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...