Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202406846, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896426

RESUMO

Ligand binding hotspots are regions of protein surfaces that form particularly favourable interactions with small molecule pharmacophores. Targeting interactions with these hotspots maximises the efficiency of ligand binding. Existing methods are capable of identifying hotspots but often lack assays to quantify ligand binding and direct elaboration at these sites. Herein, we describe a fragment-based competitive 19F Ligand Based-NMR (LB-NMR) screening platform that enables routine, quantitative ligand profiling focused at ligand-binding hotspots. As a proof of concept, the method was applied to 4'-phosphopantetheine adenylyltransferase (PPAT) from Mycobacterium abscessus (Mabs). X-ray crystallographic characterisation of the hits from a 960-member fragment screen identified three ligand-binding hotspots across the PPAT active site. From the fragment hits a collection of 19F reporter candidates were designed and synthesised. By rigorous prioritisation and use of optimisation workflows, a single 19F reporter molecule was generated for each hotspot. Profiling the binding of a set of structurally characterised ligands by competitive 19F LB-NMR with this suite of 19F reporters recapitulated the binding affinity and site ID assignments made by ITC and X-ray crystallography. This quantitative mapping of ligand binding events at hotspot level resolution establishes the utility of the fragment-based competitive 19F LB-NMR screening platform for hotspot-directed ligand profiling.

2.
Nucleic Acids Res ; 48(14): 8099-8112, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32602532

RESUMO

Translational frameshift errors are often deleterious to the synthesis of functional proteins and could therefore be promoted therapeutically to kill bacteria. TrmD (tRNA-(N(1)G37) methyltransferase) is an essential tRNA modification enzyme in bacteria that prevents +1 errors in the reading frame during protein translation and represents an attractive potential target for the development of new antibiotics. Here, we describe the application of a structure-guided fragment-based drug discovery approach to the design of a new class of inhibitors against TrmD in Mycobacterium abscessus. Fragment library screening, followed by structure-guided chemical elaboration of hits, led to the rapid development of drug-like molecules with potent in vitro TrmD inhibitory activity. Several of these compounds exhibit activity against planktonic M. abscessus and M. tuberculosis as well as against intracellular M. abscessus and M. leprae, indicating their potential as the basis for a novel class of broad-spectrum mycobacterial drugs.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , RNA de Transferência/metabolismo , tRNA Metiltransferases/antagonistas & inibidores , Antibacterianos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Descoberta de Drogas/métodos , Inibidores Enzimáticos/química , Simulação de Acoplamento Molecular , Mycobacterium abscessus/efeitos dos fármacos , Mycobacterium abscessus/enzimologia , Mycobacterium leprae/efeitos dos fármacos , Mycobacterium leprae/enzimologia , Ligação Proteica , tRNA Metiltransferases/química , tRNA Metiltransferases/metabolismo
3.
EMBO Mol Med ; 7(2): 127-39, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25535254

RESUMO

Mycobacterium tuberculosis (MTB) remains a major challenge to global health made worse by the spread of multidrug resistance. We therefore examined whether stimulating intracellular killing of mycobacteria through pharmacological enhancement of macroautophagy might provide a novel therapeutic strategy. Despite the resistance of MTB to killing by basal autophagy, cell-based screening of FDA-approved drugs revealed two anticonvulsants, carbamazepine and valproic acid, that were able to stimulate autophagic killing of intracellular M. tuberculosis within primary human macrophages at concentrations achievable in humans. Using a zebrafish model, we show that carbamazepine can stimulate autophagy in vivo and enhance clearance of M. marinum, while in mice infected with a highly virulent multidrug-resistant MTB strain, carbamazepine treatment reduced bacterial burden, improved lung pathology and stimulated adaptive immunity. We show that carbamazepine induces antimicrobial autophagy through a novel, evolutionarily conserved, mTOR-independent pathway controlled by cellular depletion of myo-inositol. While strain-specific differences in susceptibility to in vivo carbamazepine treatment may exist, autophagy enhancement by repurposed drugs provides an easily implementable potential therapy for the treatment of multidrug-resistant mycobacterial infection.


Assuntos
Anticonvulsivantes/administração & dosagem , Antituberculosos/administração & dosagem , Autofagia/efeitos dos fármacos , Carbamazepina/administração & dosagem , Inositol/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Tuberculose/fisiopatologia , Animais , Linhagem Celular , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Tuberculose/imunologia , Tuberculose/metabolismo , Peixe-Zebra
4.
Nat Chem Biol ; 4(5): 295-305, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18391949

RESUMO

Autophagy is a major clearance route for intracellular aggregate-prone proteins causing diseases such as Huntington's disease. Autophagy induction with the mTOR inhibitor rapamycin accelerates clearance of these toxic substrates. As rapamycin has nontrivial side effects, we screened FDA-approved drugs to identify new autophagy-inducing pathways. We found that L-type Ca2+ channel antagonists, the K+ATP channel opener minoxidil, and the G(i) signaling activator clonidine induce autophagy. These drugs revealed a cyclical mTOR-independent pathway regulating autophagy, in which cAMP regulates IP3 levels, influencing calpain activity, which completes the cycle by cleaving and activating G(s)alpha, which regulates cAMP levels. This pathway has numerous potential points where autophagy can be induced, and we provide proof of principle for therapeutic relevance in Huntington's disease using mammalian cell, fly and zebrafish models. Our data also suggest that insults that elevate intracytosolic Ca2+ (like excitotoxicity) inhibit autophagy, thus retarding clearance of aggregate-prone proteins.


Assuntos
Autofagia/efeitos dos fármacos , Doença de Huntington/fisiopatologia , Proteínas Quinases/fisiologia , Animais , Canais de Cálcio Tipo L/efeitos dos fármacos , Clonidina/farmacologia , AMP Cíclico/metabolismo , Humanos , Doença de Huntington/imunologia , Receptores de Imidazolinas/antagonistas & inibidores , Minoxidil/farmacologia , Transdução de Sinais , Serina-Treonina Quinases TOR , Fosfolipases Tipo C/metabolismo , Verapamil/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...