Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 31(Pt 3): 517-526, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38517755

RESUMO

Physical optics simulations for beamlines and experiments allow users to test experiment feasibility and optimize beamline settings ahead of beam time in order to optimize valuable beam time at synchrotron light sources like NSLS-II. Further, such simulations also help to develop and test experimental data processing methods and software in advance. The Synchrotron Radiation Workshop (SRW) software package supports such complex simulations. We demonstrate how recent developments in SRW significantly improve the efficiency of physical optics simulations, such as end-to-end simulations of time-dependent X-ray photon correlation spectroscopy experiments with partially coherent undulator radiation (UR). The molecular dynamics simulation code LAMMPS was chosen to model the sample: a solution of silica nanoparticles in water at room temperature. Real-space distributions of nanoparticles produced by LAMMPS were imported into SRW and used to simulate scattering patterns of partially coherent hard X-ray UR from such a sample at the detector. The partially coherent UR illuminating the sample can be represented by a set of orthogonal coherent modes obtained by simulation of emission and propagation of this radiation through the coherent hard X-ray (CHX) scattering beamline followed by a coherent-mode decomposition. GPU acceleration is added for several key functions of SRW used in propagation from sample to detector, further improving the speed of the calculations. The accuracy of this simulation is benchmarked by comparison with experimental data.

2.
ACS Nano ; 18(3): 1982-1994, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38194518

RESUMO

Sophisticated thin film growth techniques increasingly rely on the addition of a plasma component to open or widen a processing window, particularly at low temperatures. Taking advantage of continued increases in accelerator-based X-ray source brilliance, this real-time study uses X-ray Photon Correlation Spectroscopy (XPCS) to elucidate the nanoscale surface dynamics during Plasma-Enhanced Atomic Layer Deposition (PE-ALD) of an epitaxial indium nitride film. Ultrathin films are synthesized from repeated cycles of alternating self-limited surface reactions induced by temporally separated pulses of the material precursor and plasma reactant, allowing the influence of each on the evolving morphology to be examined. During the heteroepitaxial 3D growth examined here, sudden changes in the surface structure during initial film growth, consistent with numerous overlapping stress-relief events, are observed. When the film becomes continuous, the nanoscale surface morphology abruptly becomes long-lived with a correlation time spanning the period of the experiment. Throughout the growth experiment, there is a consistent repeating pattern of correlations associated with the cyclic growth process, which is modeled as transitions between different surface states. The plasma exposure does not simply freeze in a structure that is then built upon in subsequent cycles, but rather, there is considerable surface evolution during all phases of the growth cycle.

4.
Phys Rev E ; 108(1-1): 014607, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37583188

RESUMO

We demonstrate a framework of interpreting data from x-ray photon correlation spectroscopy experiments with the aid of numerical simulations to describe nanoscale dynamics in soft matter. This is exemplified with the transport of passive tracer gold nanoparticles in networks of charge-stabilized cellulose nanofibers. The main structure of dynamic modes in reciprocal space could be replicated with a simulated system of confined Brownian motion, a digital twin, allowing for a direct measurement of important effective material properties describing the local environment of the tracers.

5.
Soft Matter ; 19(2): 233-244, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36511219

RESUMO

Bicontinuous structures promise applications in a broad range of research fields, such as energy storage, membrane science, and biomaterials. Kinetically arrested spinodal decomposition is found responsible for stabilizing such structures in different types of materials. A recently developed solvent segregation driven gel (SeedGel) is demonstrated to realize bicontinuous channels thermoreversibly with tunable domain sizes by trapping nanoparticles in a particle domain. As the mechanical properties of SeedGel are very important for its future applications, a model system is characterized by temperature-dependent rheology. The storage modulus shows excellent thermo-reproducibility and interesting temperature dependence with the maximum storage modulus observed at an intermediate temperature range (around 28 °C). SANS measurements are conducted at different temperatures to identify the macroscopic solvent phase separation during the gelation transition, and solvent exchange between solvent and particle domains that is responsible for this behavior. The long-time dynamics of the gel is further studied by X-ray Photon Correlation Spectroscopy (XPCS). The results indicate that particles in the particle domain are in a glassy state and their long-time dynamics are strongly correlated with the temperature dependence of the storage modulus.

6.
ACS Appl Mater Interfaces ; 13(12): 14267-14274, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33724788

RESUMO

X-ray photon correlation spectroscopy (XPCS) microrheology and conventional bulk rheology were performed on silica nanoparticle dispersions associated with battery electrolyte applications to probe the properties of these specific complex materials and to explore the utility of XPCS microrheology in characterizing nanoparticle dispersions. Sterically stabilized shear-thickening electrolytes were synthesized by grafting poly(methyl methacrylate) chains onto silica nanoparticles. Coated silica dispersions containing 5-30 wt % nanoparticles dispersed in propylene carbonate were studied. In general, both XPCS microrheology and conventional rheology showed that coated silica dispersions were more viscous at higher concentrations, as expected. The complex viscosity of coated silica dispersions showed shear-thinning behavior over the frequency range probed by XPCS measurements. However, measurements using conventional mechanical rheometry yielded a shear viscosity with weak shear-thickening behavior for dispersions with the highest concentration of 30% particles. Our results indicate that there is a critical concentration needed for shear-thickening behavior, as well as appropriate particle size and surface polymer chain length, for this class of nanoparticle-based electrolytes. The results of this study can provide insights for comparing XPCS microrheology and bulk rheology for related complex fluids and whether XPCS microrheology can capture expected macroscopic rheological properties by probing small-scale particle dynamics.

7.
Phys Rev Lett ; 126(1): 016101, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33480781

RESUMO

Investigating the relationship between structure and dynamical processes is a central goal in condensed matter physics. Perhaps the most noted relationship between the two is the phenomenon of de Gennes narrowing, in which relaxation times in liquids are proportional to the scattering structure factor. Here, a similar relationship is discovered during the self-organized ion-beam nanopatterning of silicon using coherent x-ray scattering. However, in contrast to the exponential relaxation of fluctuations in classic de Gennes narrowing, the dynamic surface exhibits a wide range of behaviors as a function of the length scale, with a compressed exponential relaxation at lengths corresponding to the dominant structural motif-self-organized nanoscale ripples. These behaviors are reproduced in simulations of a nonlinear model describing the surface evolution. We suggest that the compressed exponential behavior observed here is due to the morphological persistence of the self-organized surface ripple patterns which form and evolve during ion-beam nanopatterning.

8.
Soft Matter ; 17(6): 1685-1691, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33367407

RESUMO

Many recent studies have highlighted the timescale for stress relaxation of biomaterials on the microscale as an important factor in regulating a number of cell-material interactions, including cell spreading, proliferation, and differentiation. Relevant timescales on the order of 0.1-100 s have been suggested by several studies. While such timescales are accessible through conventional mechanical rheology, several biomaterials have heterogeneous structures, and stress relaxation mechanisms of the bulk material may not correspond to that experienced in the cellular microenvironment. Here we employ X-ray photon correlation spectroscopy (XPCS) to explore the temperature-dependent dynamics, relaxation time, and microrheology of multicomponent hydrogels comprising of commercial poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymer F127 and alginate. Previous studies on this system have shown thermoreversible behavior in the bulk oscillatory shear rheology. At physiological temperatures, bulk rheology of these samples shows behavior characteristic of a soft solid, with G' > G'' and no crossover between G' and G'' over the measurable frequency range, indicating a relaxation time >125 s. By contrast, XPCS-based microrheology shows viscoelastic behavior at low frequencies, and XPCS-derived correlation functions show relaxation times ranging from 10-45 s on smaller length scales. Thus, we are able to use XPCS to effectively probe the viscoelasticity and relaxation behavior within the material microenvironments.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Alginatos , Polietilenoglicóis , Propilenoglicóis , Raios X
9.
ACS Appl Mater Interfaces ; 12(45): 51044-51056, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33138355

RESUMO

3D printing of amorphous and crystalline ceramics is of paramount importance for the fabrication of a wide range of devices with applications across different technology fields. Printed ceramics are remarkably enabled by the sol-gel synthesis method in conjunction with continuous filament direct ink writing. During printing, multiple processes contribute to the evolution of inks including shape retention, chemical conversion, solidification, and microstructure formation. Traditionally, depending on the ink composition and printing environment, several mechanisms have been associated with the shape retention and solidification of 3D printed structures: gelation, rapid solvent evaporation, energy-driven phase transformation, and chemical-driven phase transformation. Understanding the fundamental differences between these mechanisms becomes key since they strongly influence the spatiotemporal evolution of the materials, as the out-of-equilibrium processes inherent to the extrusion, relaxation, and solidification of printed materials have significant effects on the materials properties. In this work, we investigate the shape retention mechanism and the hydrolysis-induced material conversion and microstructure formation during the 3D printing of a water reactive sol-gel ink that transforms into titanium dioxide-based ceramic. This study aims at identifying characteristic mechanisms associated with the material transformation, establishing connections between the microstructure development and the timescales associated with solidification under operando 3D-printing conditions. The investigation of this material's out-of-equilibrium pathways under processing conditions is enabled by time-resolved coherent X-ray scattering, providing simultaneous access to temporospatially resolved microstructural and dynamics information. Furthermore, we explore X-ray speckle tracking as a tool to resolve deformations of the microstructure in a printed filament associated with the deposition of consecutive filaments. Through this work, we aim at providing a fundamental understanding of the relationships behind these transformative processes in 3D printing and their timescales as the basis for achieving unprecedented control over printed materials microstructure.

10.
J Phys Condens Matter ; 32(37): 374008, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32568740

RESUMO

In this paper, we summarize briefly some of the future trends in synchrotron science as seen at the National Synchrotron Light Source II, a new, low emittance source recently commissioned at Brookhaven National Laboratory. We touch upon imaging techniques, the study of dynamics, the increasing use of multimodal approaches, the vital importance of data science, and other enabling technologies. Each are presently undergoing a time of rapid change, driving the field of synchrotron science forward at an ever increasing pace. It is truly an exciting time and one in which Roger Cowley, to whom this journal issue is dedicated, would surely be both invigorated by, and at the heart of.

11.
Sci Rep ; 10(1): 5881, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32246019

RESUMO

Direct quantitative measurements of nanoscale dynamical processes associated with structural relaxation and crystallization near the glass transition are a major experimental challenge. These type of processes have been primarily treated as macroscopic phenomena within the framework of phenomenological models and bulk experiments. Here, we report x-ray photon correlation spectroscopy measurements of dynamics at the crystal-melt interface during the radiation induced formation of Se nano-crystallites in pure Se and in binary AsSe4 glass-forming liquids near their glass transition temperature. We observe a heterogeneous dynamical behaviour where the intensity correlation functions g2(q, t) exhibits either a compressed or a stretched exponential decay, depending on the size of the Se nano-crystallites. The corresponding relaxation timescale for the AsSe4 liquid increases as the temperature is raised, which can be attributed to changes in the chemical composition of the melt at the crystal-melt interface with the growth of the Se nano-crystallites.

12.
IUCrJ ; 6(Pt 4): 635-648, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31316808

RESUMO

Higher-order statistical analysis of X-ray scattering from dilute solutions of polydisperse goethite nanorods was performed and revealed structural information which is inaccessible by conventional small-angle scattering. For instance, a pronounced temperature dependence of the correlated scattering from suspension was observed. The higher-order scattering terms deviate from those expected for a perfectly isotropic distribution of particle orientations, demonstrating that the method can reveal faint orientational order in apparently disordered systems. The observation of correlated scattering from polydisperse particle solutions is also encouraging for future free-electron laser experiments aimed at extracting high-resolution structural information from systems with low particle heterogeneity.

13.
Nat Commun ; 10(1): 2638, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31201329

RESUMO

The properties of artificially grown thin films are strongly affected by surface processes during growth. Coherent X-rays provide an approach to better understand such processes and fluctuations far from equilibrium. Here we report results for vacuum deposition of C60 on a graphene-coated surface investigated with X-ray Photon Correlation Spectroscopy in surface-sensitive conditions. Step-flow is observed through measurement of the step-edge velocity in the late stages of growth after crystalline mounds have formed. We show that the step-edge velocity is coupled to the terrace length, and that there is a variation in the velocity from larger step spacing at the center of crystalline mounds to closely-spaced, more slowly propagating steps at their edges. The results extend theories of surface growth, since the behavior is consistent with surface evolution driven by processes that include surface diffusion, the motion of step-edges, and attachment at step edges with significant step-edge barriers.

14.
Phys Rev E ; 100(6-1): 062503, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31962430

RESUMO

Complex fluids near interfaces or confined within nanoscale volumes can exhibit substantial shifts in physical properties compared to bulk, including glass transition temperature, phase separation, and crystallization. Because studies of these effects typically use thin film samples with one dimension of confinement, it is generally unclear how more extreme spatial confinement may influence these properties. In this work, we used x-ray photon correlation spectroscopy and gold nanoprobes to characterize polyethylene oxide confined by nanostructured gratings (<100nm width) and measured the viscosity in this nanoconfinement regime to be ∼500 times the bulk viscosity. This enhanced viscosity occurs even when the scale of confinement is several times the polymer's radius of gyration, consistent with previous reports of polymer viscosity near flat interfaces.

15.
J Phys Chem Lett ; 9(15): 4182-4188, 2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-29979596

RESUMO

One challenge in studying high-temperature superconductivity (HTSC) stems from a lack of direct experimental evidence linking lattice inhomogeneity and superconductivity. Here, we apply synchrotron hard X-ray nanoimaging and small-angle scattering to reveal a novel micron-scaled ribbon phase in optimally doped Bi2Sr2CaCu2O8+δ (Bi-2212, with δ = 0.1). The morphology of the ribbon-like phase evolves simultaneously with the dome-shaped TC behavior under pressure. X-ray absorption studies show that the increasing of TC is associated with oxygen-hole redistribution in the CuO2 plan, while TC starts to decrease with pressure when oxygen holes become immobile. Additional X-ray irradiation experiments reveal that nanoscaled short-range ordering of oxygen vacancies could further lower TC, which indicates that the optimal TC is affected not only by an optimal morphology of the ribbon phase, but also an optimal distribution of oxygen vacancies. Our studies thereby provide for the first time compelling experimental evidence correlating the TC with micron to nanoscale inhomogeneity.

16.
IUCrJ ; 4(Pt 5): 604-613, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28989716

RESUMO

Small-angle X-ray scattering (SAXS) often includes an unwanted background, which increases the required measurement time to resolve the sample structure. This is undesirable in all experiments, and may make measurement of dynamic or radiation-sensitive samples impossible. Here, we demonstrate a new technique, applicable when the scattering signal is background-dominated, which reduces the requisite exposure time. Our method consists of exploiting coherent interference between a sample with a designed strongly scattering 'amplifier'. A modified angular correlation function is used to extract the symmetry of the interference term; that is, the scattering arising from the interference between the amplifier and the sample. This enables reconstruction of the sample's symmetry, despite the sample scattering itself being well below the intensity of background scattering. Thus, coherent amplification is used to generate a strong scattering term (well above background), from which sample scattering is inferred. We validate this method using lithographically defined test samples.

17.
J Synchrotron Radiat ; 23(2): 404-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26917126

RESUMO

The Vertically Integrated Photon Imaging Chip (VIPIC) was custom-designed for X-ray photon correlation spectroscopy, an application in which occupancy per pixel is low but high time resolution is needed. VIPIC operates in a sparsified streaming mode in which each detected photon is immediately read out as a time- and position-stamped event. This event stream can be fed directly to an autocorrelation engine or accumulated to form a conventional image. The detector only delivers non-zero data (sparsified readout), greatly reducing the communications overhead typical of conventional frame-oriented detectors such as charge-coupled devices or conventional hybrid pixel detectors. This feature allows continuous acquisition of data with timescales from microseconds to hours. In this work VIPIC has been used to measure X-ray photon correlation spectroscopy data on polystyrene latex nano-colliodal suspensions in glycerol and on colloidal suspensions of silica spheres in water. Relaxation times of the nano-colloids have been measured for different temperatures. These results demonstrate that VIPIC can operate continuously in the microsecond time frame, while at the same time probing longer timescales.

18.
J Synchrotron Radiat ; 21(Pt 6): 1288-95, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25343797

RESUMO

A new approach is proposed for measuring structural dynamics in materials from multi-speckle scattering patterns obtained with partially coherent X-rays. Coherent X-ray scattering is already widely used at high-brightness synchrotron lightsources to measure dynamics using X-ray photon correlation spectroscopy, but in many situations this experimental approach based on recording long series of images (i.e. movies) is either not adequate or not practical. Following the development of visible-light speckle visibility spectroscopy, the dynamic information is obtained instead by analyzing the photon statistics and calculating the speckle contrast in single scattering patterns. This quantity, also referred to as the speckle visibility, is determined by the properties of the partially coherent beam and other experimental parameters, as well as the internal motions in the sample (dynamics). As a case study, Brownian dynamics in a low-density colloidal suspension is measured and an excellent agreement is found between correlation functions measured by X-ray photon correlation spectroscopy and the decay in speckle visibility with integration time obtained from the analysis presented here.

19.
Soft Matter ; 10(43): 8698-704, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25255771

RESUMO

We use X-ray photon correlation spectroscopy to study the dynamics of hard sphere suspensions and report the emergence of ergodicity restoring anomalous intermittent relaxation modes in the highest concentration suspension that is estimated to be above the glass transition concentration. We associate these phenomena with non-thermal stress induced relaxations and support our interpretation by a direct comparison of the results with predictions of the mode coupling theory.

20.
Nat Commun ; 5: 4049, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24887086

RESUMO

Colloidal suspensions are characterized by a variety of microscopic interactions, which generate unconventional phase diagrams encompassing fluid, gel and glassy states and offer the possibility to study new phase and/or state transitions. Among these, glass-glass transitions are rare to be found, especially at ambient conditions. Here, through a combination of dilution experiments, X-ray photon correlation spectroscopy, small angle X-ray scattering, rheological measurements and Monte Carlo simulations, we provide evidence of a spontaneous glass-glass transition in a colloidal clay. Two different glassy states are distinguished with evolving waiting time: a first one, dominated by long-range screened Coulombic repulsion (Wigner glass) and a second one, stabilized by orientational attractions (Disconnected House of Cards glass), occurring after a much longer time. These findings may have implications for heterogeneously charged systems out-of-equilibrium and for applications where a fine control of the local order and/or long term stability of the amorphous materials are required.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...