Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Pharm Sci ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38825234

RESUMO

The purpose of this study was to investigate the mechanical stresses and strains acting on pharmaceutical glass tubing vials during freezing and thawing of model pharmaceutical formulations. Strain measurements were conducted inside of a laboratory-scale freeze-dryer using a custom wireless sensor. In both sucrose and trehalose formulations at concentrations between 5 % and 20 % w/v, the strain measurements initially increased before peaking in magnitude at temperatures close to the respective glass transition temperatures of the maximally freeze concentrated solutes, Tg'. We attribute this behavior to a shift in the mechanical properties of the frozen system from a purely elastic glass below Tg' to a viscoelastic rubber-like material above Tg'. That is, when the interstitial region becomes mechanically compliant at temperature above Tg'. The outputs were less predictable below 5 % w/v and tended to exhibit two separate peaks in strain output, one near the equilibrium melting temperature of pure ice and the other near Tg'. The peaks merged at concentrations between 4 and 5 % w/v where the largest strain magnitude was observed. The strain on primary packaging has traditionally been applied to evaluate the risk of damage or breakage due to, for example, crystallization of excipients. However, data collected during this study suggest there may be utility in formulation design or as a process analytical technology to minimize potentially destabilizing stresses and strains in the frozen formulation.

2.
Inorg Chem ; 59(9): 5939-5948, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32302113

RESUMO

Bimetallic magnesium(II) complexes are gaining significant interest in catalysis, yet their fundamental formation and behavior in organic media remain surprisingly unexplored relative to other divalent cations. To understand key principles of their formation, we investigate symmetric ditopic ligands bearing a phenolic backbone and characterize their ability to form dinuclear magnesium(II) cascade complexes with two bridging anions. High-fidelity production of bimetallic magnesium complexes relative to the monometallic complexes is indicative of positive cooperativity. Binding and recognition of analytes or substrates is a key characteristic of metal cascade complexes and relies on anion exchange, but this is also rarely studied with bimetallic magnesium complexes. Investigations with acetate, phosphate, and pyrophosphate reveal exchange of bridging nitrates using the bis-dipicolylamine complex. Rare seven-coordinate magnesium centers are found for the ester complex. The findings in this study provide formative steps to establish design principles for future generations of bimetallic magnesium(II) complexes.

3.
EBioMedicine ; 24: 166-178, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28965876

RESUMO

Autism spectrum disorder (ASD) is one of the most prevalent neurodevelopmental conditions worldwide. There is growing awareness that ASD is highly comorbid with gastrointestinal distress and altered intestinal microbiome, and that host-microbiome interactions may contribute to the disease symptoms. However, the paucity of knowledge on gut-brain axis signaling in autism constitutes an obstacle to the development of precision microbiota-based therapeutics in ASD. To this end, we explored the interactions between intestinal microbiota, gut physiology and social behavior in a BTBR T+Itpr3tf/J mouse model of ASD. Here we show that a reduction in the relative abundance of very particular bacterial taxa in the BTBR gut - namely, bile-metabolizing Bifidobacterium and Blautia species, - is associated with deficient bile acid and tryptophan metabolism in the intestine, marked gastrointestinal dysfunction, as well as impaired social interactions in BTBR mice. Together these data support the concept of targeted manipulation of the gut microbiota for reversing gastrointestinal and behavioral symptomatology in ASD, and offer specific plausible targets in this endeavor.


Assuntos
Transtorno do Espectro Autista/complicações , Bactérias/classificação , Ácidos e Sais Biliares/metabolismo , Gastroenteropatias/microbiologia , Triptofano/metabolismo , Animais , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Bactérias/isolamento & purificação , Bifidobacterium/classificação , Bifidobacterium/isolamento & purificação , Modelos Animais de Doenças , Gastroenteropatias/genética , Gastroenteropatias/metabolismo , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Masculino , Camundongos , Microbiota
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...