Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diabetes ; 70(8): 1754-1766, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34285121

RESUMO

Half of the mortality in diabetes is seen in individuals <50 years of age and commonly predicted by the early onset of diabetic kidney disease (DKD). In type 1 diabetes, increased urinary albumin-to-creatinine ratio (uACR) during adolescence defines this risk, but the pathological factors responsible remain unknown. We postulated that early in diabetes, glucose variations contribute to kidney injury molecule-1 (KIM-1) release from circulating T cells, elevating uACR and DKD risk. DKD risk was assigned in youth with type 1 diabetes (n = 100; 20.0 ± 2.8 years; males/females, 54:46; HbA1c 66.1 [12.3] mmol/mol; diabetes duration 10.7 ± 5.2 years; and BMI 24.5 [5.3] kg/m2) and 10-year historical uACR, HbA1c, and random blood glucose concentrations collected retrospectively. Glucose fluctuations in the absence of diabetes were also compared with streptozotocin diabetes in apolipoprotein E -/- mice. Kidney biopsies were used to examine infiltration of KIM-1-expressing T cells in DKD and compared with other chronic kidney disease. Individuals at high risk for DKD had persistent elevations in uACR defined by area under the curve (AUC; uACRAUC0-10yrs, 29.7 ± 8.8 vs. 4.5 ± 0.5; P < 0.01 vs. low risk) and early kidney dysfunction, including ∼8.3 mL/min/1.73 m2 higher estimated glomerular filtration rates (modified Schwartz equation; Padj < 0.031 vs. low risk) and plasma KIM-1 concentrations (∼15% higher vs. low risk; P < 0.034). High-risk individuals had greater glycemic variability and increased peripheral blood T-cell KIM-1 expression, particularly on CD8+ T cells. These findings were confirmed in a murine model of glycemic variability both in the presence and absence of diabetes. KIM-1+ T cells were also infiltrating kidney biopsies from individuals with DKD. Healthy primary human proximal tubule epithelial cells exposed to plasma from high-risk youth with diabetes showed elevated collagen IV and sodium-glucose cotransporter 2 expression, alleviated with KIM-1 blockade. Taken together, these studies suggest that glycemic variations confer risk for DKD in diabetes via increased CD8+ T-cell production of KIM-1.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Tipo 1/sangue , Nefropatias Diabéticas/sangue , Receptor Celular 1 do Vírus da Hepatite A/sangue , Rim/patologia , Adolescente , Adulto , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 1/fisiopatologia , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/fisiopatologia , Feminino , Taxa de Filtração Glomerular/fisiologia , Humanos , Rim/fisiopatologia , Testes de Função Renal , Masculino , Estudos Retrospectivos , Adulto Jovem
2.
Cardiovasc Diabetol ; 20(1): 116, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34074290

RESUMO

BACKGROUND: Diabetes is associated with a significantly elevated risk of cardiovascular disease and its specific pathophysiology remains unclear. Recent studies have changed our understanding of cardiac cellularity, with cellular changes accompanying diabetes yet to be examined in detail. This study aims to characterise the changes in the cardiac cellular landscape in murine diabetes to identify potential cellular protagonists in the diabetic heart. METHODS: Diabetes was induced in male FVB/N mice by low-dose streptozotocin and a high-fat diet for 26-weeks. Cardiac function was measured by echocardiography at endpoint. Flow cytometry was performed on cardiac ventricles as well as blood, spleen, and bone-marrow at endpoint from non-diabetic and diabetic mice. To validate flow cytometry results, immunofluorescence staining was conducted on left-ventricles of age-matched mice. RESULTS: Mice with diabetes exhibited hyperglycaemia and impaired glucose tolerance at endpoint. Echocardiography revealed reduced E:A and e':a' ratios in diabetic mice indicating diastolic dysfunction. Systolic function was not different between the experimental groups. Detailed examination of cardiac cellularity found resident mesenchymal cells (RMCs) were elevated as a result of diabetes, due to a marked increase in cardiac fibroblasts, while smooth muscle cells were reduced in proportion. Moreover, we found increased levels of Ly6Chi monocytes in both the heart and in the blood. Consistent with this, the proportion of bone-marrow haematopoietic stem cells were increased in diabetic mice. CONCLUSIONS: Murine diabetes results in distinct changes in cardiac cellularity. These changes-in particular increased levels of fibroblasts-offer a framework for understanding how cardiac cellularity changes in diabetes. The results also point to new cellular mechanisms in this context, which may further aid in development of pharmacotherapies to allay the progression of cardiomyopathy associated with diabetes.


Assuntos
Diabetes Mellitus Experimental/complicações , Cardiomiopatias Diabéticas/etiologia , Fibroblastos/patologia , Miocárdio/patologia , Disfunção Ventricular Esquerda/etiologia , Função Ventricular Esquerda , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/fisiopatologia , Diástole , Dieta Hiperlipídica , Fibroblastos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Masculino , Camundongos , Monócitos/metabolismo , Monócitos/patologia , Miocárdio/metabolismo , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Estreptozocina , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia
3.
Arterioscler Thromb Vasc Biol ; 41(3): 1167-1178, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33441028

RESUMO

OBJECTIVE: People with diabetes are at a significantly higher risk of cardiovascular disease, in part, due to accelerated atherosclerosis. Diabetic subjects have increased number of platelets that are activated, more reactive, and respond suboptimally to antiplatelet therapies. We hypothesized that reducing platelet numbers by inducing their premature apoptotic death would decrease atherosclerosis. Approach and Results: This was achieved by targeting the antiapoptotic protein Bcl-xL (B-cell lymphoma-extra large; which is essential for platelet viability) via distinct genetic and pharmacological approaches. In the former, we transplanted bone marrow from mice carrying the Tyr15 to Cys loss of function allele of Bcl-x (known as Bcl-xPlt20) or wild-type littermate controls into atherosclerotic-prone Ldlr+/- mice made diabetic with streptozotocin and fed a Western diet. Reduced Bcl-xL function in hematopoietic cells significantly decreased platelet numbers, exclusive of other hematologic changes. This led to a significant reduction in atherosclerotic lesion formation in Bcl-xPlt20 bone marrow transplanted Ldlr+/- mice. To assess the potential therapeutic relevance of reducing platelets in atherosclerosis, we next targeted Bcl-xL with a pharmacological strategy. This was achieved by low-dose administration of the BH3 (B-cell lymphoma-2 homology domain 3) mimetic, ABT-737 triweekly, in diabetic Apoe-/- mice for the final 6 weeks of a 12-week study. ABT-737 normalized platelet numbers along with platelet and leukocyte activation to that of nondiabetic controls, significantly reducing atherosclerosis while promoting a more stable plaque phenotype. CONCLUSIONS: These studies suggest that selectively reducing circulating platelets, by targeting Bcl-xL to promote platelet apoptosis, can reduce atherosclerosis and lower cardiovascular disease risk in diabetes. Graphic Abstract: A graphic abstract is available for this article.


Assuntos
Aterosclerose/sangue , Aterosclerose/complicações , Plaquetas/patologia , Angiopatias Diabéticas/sangue , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Aterosclerose/prevenção & controle , Compostos de Bifenilo/administração & dosagem , Plaquetas/efeitos dos fármacos , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/complicações , Feminino , Humanos , Leucócitos/patologia , Leucócitos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nitrofenóis/administração & dosagem , Piperazinas/administração & dosagem , Contagem de Plaquetas , Receptores de LDL/deficiência , Receptores de LDL/genética , Fatores de Risco , Sulfonamidas/administração & dosagem
4.
Front Cardiovasc Med ; 7: 570553, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195459

RESUMO

Clinical trials investigating whether glucose lowering treatment reduces the risk of CVD in diabetes have thus far yielded mixed results. However, this doesn't rule out the possibility of hyperglycemia playing a major causal role in promoting CVD or elevating CVD risk. In fact, lowering glucose appears to promote some beneficial long-term effects, and continuous glucose monitoring devices have revealed that postprandial spikes of hyperglycemia occur frequently, and may be an important determinant of CVD risk. It is proposed that these short, intermittent bursts of hyperglycemia may have detrimental effects on several organ systems including the vasculature and the hematopoietic system collectively contributing to the state of elevated CVD risk in diabetes. In this review, we summarize the potential mechanisms through which hyperglycemic spikes may increase atherosclerosis and how new and emerging interventions may combat this.

5.
Circ Res ; 127(7): 877-892, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32564710

RESUMO

RATIONALE: Treatment efficacy for diabetes mellitus is largely determined by assessment of HbA1c (glycated hemoglobin A1c) levels, which poorly reflects direct glucose variation. People with prediabetes and diabetes mellitus spend >50% of their time outside the optimal glucose range. These glucose variations, termed transient intermittent hyperglycemia (TIH), appear to be an independent risk factor for cardiovascular disease, but the pathological basis for this association is unclear. OBJECTIVE: To determine whether TIH per se promotes myelopoiesis to produce more monocytes and consequently adversely affects atherosclerosis. METHODS AND RESULTS: To create a mouse model of TIH, we administered 4 bolus doses of glucose at 2-hour intervals intraperitoneally once to WT (wild type) or once weekly to atherosclerotic prone mice. TIH accelerated atherogenesis without an increase in plasma cholesterol, seen in traditional models of diabetes mellitus. TIH promoted myelopoiesis in the bone marrow, resulting in increased circulating monocytes, particularly the inflammatory Ly6-Chi subset, and neutrophils. Hematopoietic-restricted deletion of S100a9, S100a8, or its cognate receptor Rage prevented monocytosis. Mechanistically, glucose uptake via GLUT (glucose transporter)-1 and enhanced glycolysis in neutrophils promoted the production of S100A8/A9. Myeloid-restricted deletion of Slc2a1 (GLUT-1) or pharmacological inhibition of S100A8/A9 reduced TIH-induced myelopoiesis and atherosclerosis. CONCLUSIONS: Together, these data provide a mechanism as to how TIH, prevalent in people with impaired glucose metabolism, contributes to cardiovascular disease. These findings provide a rationale for continual glucose control in these patients and may also suggest that strategies aimed at targeting the S100A8/A9-RAGE (receptor for advanced glycation end products) axis could represent a viable approach to protect the vulnerable blood vessels in diabetes mellitus. Graphic Abstract: A graphic abstract is available for this article.


Assuntos
Aterosclerose/etiologia , Glicemia/metabolismo , Hiperglicemia/complicações , Monócitos/metabolismo , Mielopoese , Neutrófilos/metabolismo , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Biomarcadores/sangue , Calgranulina A/genética , Calgranulina A/metabolismo , Calgranulina B/genética , Calgranulina B/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Glicólise , Hiperglicemia/sangue , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Monócitos/patologia , Neutrófilos/patologia , Placa Aterosclerótica , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais
6.
Adv Clin Chem ; 98: 173-231, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32564786

RESUMO

The S100 family proteins possess a variety of intracellular and extracellular functions. They interact with multiple receptors and signal transducers to regulate pathways that govern inflammation, cell differentiation, proliferation, energy metabolism, apoptosis, calcium homeostasis, cell cytoskeleton and microbial resistance. S100 proteins are also emerging as novel diagnostic markers for identifying and monitoring various diseases. Strategies aimed at targeting S100-mediated signaling pathways hold a great potential in developing novel therapeutics for multiple diseases. In this chapter, we aim to summarize the current knowledge about the role of S100 family proteins in health and disease with a major focus on their role in inflammatory conditions.


Assuntos
Inflamação/metabolismo , Proteínas S100/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico , Biomarcadores/metabolismo , Humanos , Inflamação/tratamento farmacológico
7.
Front Immunol ; 10: 2054, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31555280

RESUMO

Monocytes in humans consist of 3 subsets; CD14+CD16- (classical), CD14+CD16+ (intermediate) and CD14dimCD16+ (non-classical), which exhibit distinct and heterogeneous responses to activation. During acute inflammation CD14+CD16- monocytes are significantly elevated and migrate to the sites of injury via the adhesion cascade. The field of immunometabolism has begun to elucidate the importance of the engagement of specific metabolic pathways in immune cell function. Yet, little is known about monocyte metabolism and the role of metabolism in mediating monocyte activation and adherence to vessels. Accordingly, we aimed to determine whether manipulating the metabolism of CD14+CD16- monocytes alters their ability to become activated and adhere. We discovered that LPS stimulation increased the rate of glycolysis in human CD14+CD16- monocytes. Inhibition of glycolysis with 2-deoxy-D-glucose blunted LPS-induced activation and adhesion of monocytes. Mechanistically, we found that increased glycolysis was regulated by mTOR-induced glucose transporter (GLUT)-1. Furthermore, enhanced glycolysis increased accumulation of reactive oxygen species (ROS) and activation of p38 MAPK, which lead to activation and adhesion of monocytes. These findings reveal that glycolytic metabolism is critical for the activation of CD14+CD16- monocytes and contributes to our understanding of the interplay between metabolic substrate preference and immune cell function.


Assuntos
Inflamação/imunologia , Monócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Adesão Celular , Células Cultivadas , Desoxiglucose/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Glicólise , Humanos , Imunofenotipagem , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/metabolismo , Sistema de Sinalização das MAP Quinases , Monócitos/imunologia , Receptores de IgG/metabolismo , Serina-Treonina Quinases TOR/metabolismo
8.
Front Pharmacol ; 10: 666, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31249530

RESUMO

Atherosclerotic cardiovascular disease (CVD) is a lipid-driven chronic inflammatory disease, in which macrophages are responsible for taking up these lipids and driving disease progression. Over the years, we and others have uncovered key pathways that regulate macrophage number/function and identified how metabolic disorders such as diabetes and obesity, which are common risk factors for CVD, exacerbate these pathways. This ultimately accelerates the progression of atherosclerosis and hinders atherosclerotic regression. In this review, we discuss the different types of macrophages, from monocyte-derived macrophages, local macrophage proliferation, to macrophage-like vascular smooth muscle cells, that contribute to atherosclerosis as well as myeloid-derived suppressor cells that may have anti-atherogenic effects. We will also discuss how diabetes and obesity influence plaque macrophage accumulation and monocyte production (myelopoiesis) to promote atherogenesis as well as an exciting therapeutic target, S100A8/A9, which mediates myelopoiesis in response to both diabetes and obesity, shown to be effective in reducing atherosclerosis in pre-clinical models of diabetes.

9.
Clin Transl Immunology ; 8(12): e1098, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31890207

RESUMO

The importance of metabolic regulation in the immune system has launched back into the limelight in recent years. Various metabolic pathways have been examined in the context of their contribution to maintaining immune cell homeostasis and function. Moreover, this regulation is also important in the immune cell precursors, where metabolism controls their maintenance and cell fate. This review will discuss lipid metabolism in the context of haematopoiesis, that is blood cell development. We specifically focus on nonoxidative lipid metabolism which encapsulates the synthesis and degradation of the major lipid classes such as phospholipids, sphingolipids and sterols. We will also discuss how these metabolic processes are affected by haematological malignancies such as leukaemia and lymphoma, which are known to have altered metabolism, and how these different pathways contribute to the pathology.

10.
Eur Heart J ; 39(23): 2158-2167, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29905812

RESUMO

Aim: Rheumatoid arthritis (RA) is associated with an approximately two-fold elevated risk of cardiovascular (CV)-related mortality. Patients with RA present with systemic inflammation including raised circulating myeloid cells, but fail to display traditional CV risk-factors, particularly dyslipidaemia. We aimed to explore if increased circulating myeloid cells is associated with impaired atherosclerotic lesion regression or altered progression in RA. Methods and results: Using flow cytometry, we noted prominent monocytosis, neutrophilia, and thrombocytosis in two mouse models of RA. This was due to enhanced proliferation of the haematopoietic stem and progenitor cells (HSPCs) in the bone marrow and the spleen. HSPCs expansion was associated with an increase in the cholesterol content, due to a down-regulation of cholesterol efflux genes, Apoe, Abca1, and Abcg1. The HSPCs also had enhanced expression of key myeloid promoting growth factor receptors. Systemic inflammation was found to cause defective cellular cholesterol metabolism. Increased myeloid cells in mice with RA were associated with a significant impairment in lesion regression, even though cholesterol levels were equivalent to non-arthritic mice. Lesions from arthritic mice exhibited a less stable phenotype as demonstrated by increased immune cell infiltration, lipid accumulation, and decreased collagen formation. In a progression model, we noted monocytosis, enhanced monocytes recruitment to lesions, and increased plaque macrophages. This was reversed with administration of reconstituted high-density lipoprotein (rHDL). Furthermore, RA patients have expanded CD16+ monocyte subsets and a down-regulation of ABCA1 and ABCG1. Conclusion: Rheumatoid arthritis impairs atherosclerotic regression and alters progression, which is associated with an expansion of myeloid cells and disturbed cellular cholesterol handling, independent of plasma cholesterol levels. Infusion of rHDL prevented enhanced myelopoiesis and monocyte entry into lesions. Targeting cellular cholesterol defects in people with RA, even if plasma cholesterol is within the normal range, may limit vascular disease.


Assuntos
Artrite Reumatoide/metabolismo , Aterosclerose/metabolismo , Colesterol/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Monócitos/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adulto , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Artrite Reumatoide/imunologia , Aterosclerose/genética , Aterosclerose/imunologia , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Hematopoese Extramedular/imunologia , Humanos , Leucocitose , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Monócitos/imunologia , Mielopoese/imunologia , Neutrófilos , RNA Mensageiro/metabolismo , Trombocitose
11.
J Endocrinol ; 238(1): R1-R11, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29720539

RESUMO

Platelets play a critical role in both the initiation and progression of atherosclerosis, and even more so in the ensuing atherothrombotic complications. Low-dose aspirin remains the mainstay of antiplatelet therapy in high-risk patients by reducing the risk of myocardial ischemia, stroke or death due to cardiovascular disease. However, antiplatelet therapies lose their efficacy in people with diabetes mellitus, increasing the risk of future atherothrombotic events. The molecular mechanisms that promote platelet hyperactivity remain unclear but could be due to glycation-induced conformational changes of platelet membranes resulting in impaired aspirin entry or less-efficient acetylation/compensatory increase in COX-2 expression in newborn platelets. Emerging evidence from our laboratory and elsewhere suggest that enhanced platelet turnover (thrombopoiesis), particularly the production of immature reticulated platelets from the bone marrow, could contribute to atherosclerotic complications. We have identified a major role for neutrophil-derived S100A8/A9, a damage-associated molecular pattern, in driving reticulated thrombopoiesis by directly interacting with its receptors on Kupffer cells in the liver. In this review, we discuss the role of hepatic inflammation in driving reticulated platelet production and suggest potential targets to control their production, improve efficacy of current antiplatelet therapies and reduce the risk of atherothrombotic complications.


Assuntos
Aterosclerose/etiologia , Hepatite/complicações , Fígado/fisiologia , Trombopoese/fisiologia , Animais , Aspirina/uso terapêutico , Aterosclerose/tratamento farmacológico , Aterosclerose/patologia , Aterosclerose/fisiopatologia , Plaquetas/efeitos dos fármacos , Plaquetas/fisiologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/fisiologia , Hepatite/patologia , Hepatite/fisiopatologia , Humanos , Recém-Nascido , Fígado/efeitos dos fármacos , Fígado/patologia , Mielopoese/efeitos dos fármacos , Mielopoese/fisiologia , Fatores de Risco , Trombopoese/efeitos dos fármacos , Resultado do Tratamento
12.
Haematologica ; 103(4): 597-606, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29371326

RESUMO

Obesity enhances the risk of developing myelodysplastic syndromes. However, the effect of obesity on survival is unclear. Obese people present with monocytosis due to inflammatory signals emanating from obese adipose tissue. We hypothesized that obesity-induced myelopoiesis would promote the transition of myelodysplastic syndrome to acute myeloid leukemia and accelerate mortality in obesity. Obese Ob/Ob mice or their lean littermate controls received a bone marrow transplant from NUP98-HOXD13 transgenic mice, a model of myelodysplastic syndrome. The metabolic parameters of the mice were examined throughout the course of the study, as were blood leukocytes. Myeloid cells were analyzed in the bone, spleen, liver and adipose tissue by flow cytometry halfway through the disease progression and at the endpoint. Survival curves were also calculated. Contrary to our hypothesis, transplantation of NUP98-HOXD13 bone marrow into obese recipient mice significantly increased survival time compared with lean recipient controls. While monocyte skewing was exacerbated in obese mice receiving NUP98-HOXD13 bone marrow, transformation to acute myeloid leukemia was not enhanced. Increased survival of obese mice was associated with a preservation of fat mass as well as increased myeloid cell deposition within the adipose tissue, and a concomitant reduction in detrimental myeloid cell accumulation within other organs. The study herein revealed that obesity increases survival in animals with myelodysplastic syndrome. This may be due to the greater fat mass of Ob/Ob mice, which acts as a sink for myeloid cells, preventing their accumulation in other key organs, such as the liver.


Assuntos
Síndromes Mielodisplásicas/mortalidade , Obesidade , Animais , Medula Óssea/química , Transplante de Medula Óssea , Modelos Animais de Doenças , Proteínas de Homeodomínio , Leptina/deficiência , Leucemia Mieloide Aguda/etiologia , Camundongos , Camundongos Transgênicos , Síndromes Mielodisplásicas/patologia , Células Mieloides , Complexo de Proteínas Formadoras de Poros Nucleares , Taxa de Sobrevida , Fatores de Transcrição
13.
Atherosclerosis ; 265: 47-53, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28858686

RESUMO

BACKGROUND AND AIMS: Monocyte levels predict cardiovascular outcomes and play a causal role in atherogenesis. Monocytes can be produced in the spleen and track to the atherosclerotic lesion in significant numbers. The cholinergic system has been shown to have anti-inflammatory actions in the spleen. We aimed to explore whether therapeutic stimulation of the nicotinic acetylcholine receptor alpha 7 (nAChRα7) can suppress atherogenesis. METHODS: Apoe-/- mice were placed on a Western-type diet and treated with bi-daily injections of the nAChRα7 agonist GTS-21 or vehicle every 2-3 days for 8 weeks. RESULTS: GTS-21 caused a reduction in atherosclerosis in the aortic arch and proximal aorta. This also resulted in less plaque macrophages. Moreover, GTS-21 reduced the abundance of blood monocytes, which was caused by inhibition of inflammatory cytokines and extramedullary hematopoiesis in the spleen, along with splenic monocytes. CONCLUSIONS: Stimulation of nAChRα7 with GTS-21 reduced atherosclerosis, which was associated with dampened splenic myelopoiesis.


Assuntos
Aorta Torácica/efeitos dos fármacos , Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Compostos de Benzilideno/farmacologia , Mielopoese/efeitos dos fármacos , Agonistas Nicotínicos/farmacologia , Piridinas/farmacologia , Baço/efeitos dos fármacos , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Animais , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Dieta Ocidental , Modelos Animais de Doenças , Masculino , Camundongos Knockout para ApoE , Placa Aterosclerótica , Baço/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...