Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
2.
J Chem Inf Model ; 63(6): 1675-1694, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36926871

RESUMO

Cytochrome P450 enzymes aid in the elimination of a preponderance of small molecule drugs, but can generate reactive metabolites that may adversely react with protein and DNA and prompt drug candidate attrition or market withdrawal. Previously developed models help understand how these enzymes modify molecule structure by predicting sites of metabolism or characterizing formation of metabolite-biomolecule adducts. However, the majority of reactive metabolites are formed by multiple metabolic steps, and understanding the progenitor molecule's network-level behavior necessitates an integrative approach that blends multiple site of metabolism and structure inference models. Our previously developed tool, XenoNet 1.0, generates metabolic networks, where nodes are molecules and weighted edges are metabolic transformations. We extend XenoNet with a bidirectional message passing neural network that integrates edge feature information and local network structure using edge-conditioned graph convolutions and jumping knowledge to predict the authenticity of inferred Phase I metabolite structures. Our model significantly outperformed prior work and algorithmic baselines on a data set of 311 networks and 6606 intermediates annotated using a chemically diverse set of 20 736 individual in vitro and in vivo reaction records accounting for 92.3% of all human Phase I metabolism in the Accelrys Metabolite Database. Cross-validated predictions resulted in area under the receiver operating characteristic curves of 88.5% and 87.6% for separating experimentally observed and unobserved metabolites at global and network levels, respectively. Further analysis verified robustness to networks of varying depth and breadth, accurate detection of metabolites, such as d,l-methamphetamine, that are experimentally observed or unobserved in different network contexts, extraction of important metabolic subnetworks, and identification of known bioactivation pathways, such as for nimesulide and terbinafine. By exploiting network structures, our approach accurately suggests unreported metabolites for experimental study and may rationalize modifications for avoiding deleterious pathways antecedent to reactive metabolite formation.


Assuntos
Redes e Vias Metabólicas , Redes Neurais de Computação , Humanos , Estrutura Molecular , Terbinafina/metabolismo
3.
PLoS Comput Biol ; 17(7): e1009053, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34228716

RESUMO

Drug-drug interactions account for up to 30% of adverse drug reactions. Increasing prevalence of electronic health records (EHRs) offers a unique opportunity to build machine learning algorithms to identify drug-drug interactions that drive adverse events. In this study, we investigated hospitalizations' data to study drug interactions with non-steroidal anti-inflammatory drugs (NSAIDS) that result in drug-induced liver injury (DILI). We propose a logistic regression based machine learning algorithm that unearths several known interactions from an EHR dataset of about 400,000 hospitalization. Our proposed modeling framework is successful in detecting 87.5% of the positive controls, which are defined by drugs known to interact with diclofenac causing an increased risk of DILI, and correctly ranks aggregate risk of DILI for eight commonly prescribed NSAIDs. We found that our modeling framework is particularly successful in inferring associations of drug-drug interactions from relatively small EHR datasets. Furthermore, we have identified a novel and potentially hepatotoxic interaction that might occur during concomitant use of meloxicam and esomeprazole, which are commonly prescribed together to allay NSAID-induced gastrointestinal (GI) bleeding. Empirically, we validate our approach against prior methods for signal detection on EHR datasets, in which our proposed approach outperforms all the compared methods across most metrics, such as area under the receiver operating characteristic curve (AUROC) and area under the precision-recall curve (AUPRC).


Assuntos
Anti-Inflamatórios não Esteroides/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas , Interações Medicamentosas , Registros Eletrônicos de Saúde/estatística & dados numéricos , Aprendizado de Máquina , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Doença Hepática Induzida por Substâncias e Drogas/epidemiologia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Biologia Computacional , Feminino , Humanos , Fígado/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Estudos Retrospectivos , Adulto Jovem
4.
Metabolites ; 11(6)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203690

RESUMO

The 3,5-dimethylisoxazole motif has become a useful and popular acetyl-lysine mimic employed in isoxazole-containing bromodomain and extra-terminal (BET) inhibitors but may introduce the potential for bioactivations into toxic reactive metabolites. As a test, we coupled deep neural models for quinone formation, metabolite structures, and biomolecule reactivity to predict bioactivation pathways for 32 BET inhibitors and validate the bioactivation of select inhibitors experimentally. Based on model predictions, inhibitors were more likely to undergo bioactivation than reported non-bioactivated molecules containing isoxazoles. The model outputs varied with substituents indicating the ability to scale their impact on bioactivation. We selected OXFBD02, OXFBD04, and I-BET151 for more in-depth analysis. OXFBD's bioactivations were evenly split between traditional quinones and novel extended quinone-methides involving the isoxazole yet strongly favored the latter quinones. Subsequent experimental studies confirmed the formation of both types of quinones for OXFBD molecules, yet traditional quinones were the dominant reactive metabolites. Modeled I-BET151 bioactivations led to extended quinone-methides, which were not verified experimentally. The differences in observed and predicted bioactivations reflected the need to improve overall bioactivation scaling. Nevertheless, our coupled modeling approach predicted BET inhibitor bioactivations including novel extended quinone methides, and we experimentally verified those pathways highlighting potential concerns for toxicity in the development of these new drug leads.

5.
Front Pharmacol ; 12: 805133, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095511

RESUMO

Coumadin (R/S-warfarin) anticoagulant therapy is highly efficacious in preventing the formation of blood clots; however, significant inter-individual variations in response risks over or under dosing resulting in adverse bleeding events or ineffective therapy, respectively. Levels of pharmacologically active forms of the drug and metabolites depend on a diversity of metabolic pathways. Cytochromes P450 play a major role in oxidizing R- and S-warfarin to 6-, 7-, 8-, 10-, and 4'-hydroxywarfarin, and warfarin alcohols form through a minor metabolic pathway involving reduction at the C11 position. We hypothesized that due to structural similarities with warfarin, hydroxywarfarins undergo reduction, possibly impacting their pharmacological activity and elimination. We modeled reduction reactions and carried out experimental steady-state reactions with human liver cytosol for conversion of rac-6-, 7-, 8-, 4'-hydroxywarfarin and 10-hydroxywarfarin isomers to the corresponding alcohols. The modeling correctly predicted the more efficient reduction of 10-hydroxywarfarin over warfarin but not the order of the remaining hydroxywarfarins. Experimental studies did not indicate any clear trends in the reduction for rac-hydroxywarfarins or 10-hydroxywarfarin into alcohol 1 and 2. The collective findings indicated the location of the hydroxyl group significantly impacted reduction selectivity among the hydroxywarfarins, as well as the specificity for the resulting metabolites. Based on studies with R- and S-7-hydroxywarfarin, we predicted that all hydroxywarfarin reductions are enantioselective toward R substrates and enantiospecific for S alcohol metabolites. CBR1 and to a lesser extent AKR1C3 reductases are responsible for those reactions. Due to the inefficiency of reactions, only reduction of 10-hydroxywarfarin is likely to be important in clearance of the metabolite. This pathway for 10-hydroxywarfarin may have clinical relevance as well given its anticoagulant activity and capacity to inhibit S-warfarin metabolism.

6.
Drug Metab Dispos ; 49(2): 133-141, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33239334

RESUMO

Meclofenamate is a nonsteroidal anti-inflammatory drug used in the treatment of mild-to-moderate pain yet poses a rare risk of hepatotoxicity through an unknown mechanism. Nonsteroidal anti-inflammatory drug (NSAID) bioactivation is a common molecular initiating event for hepatotoxicity. Thus, we hypothesized a similar mechanism for meclofenamate and leveraged computational and experimental approaches to identify and characterize its bioactivation. Analyses employing our XenoNet model indicated possible pathways to meclofenamate bioactivation into 19 reactive metabolites subsequently trapped into glutathione adducts. We describe the first reported bioactivation kinetics for meclofenamate and relative importance of those pathways using human liver microsomes. The findings validated only four of the many bioactivation pathways predicted by modeling. For experimental studies, dansyl glutathione was a critical trap for reactive quinone metabolites and provided a way to characterize adduct structures by mass spectrometry and quantitate yields during reactions. Of the four quinone adducts, we were able to characterize structures for three of them. Based on kinetics, the most efficient bioactivation pathway led to the monohydroxy para-quinone-imine followed by the dechloro-ortho-quinone-imine. Two very inefficient pathways led to the dihydroxy ortho-quinone and a likely multiply adducted quinone. When taken together, bioactivation pathways for meclofenamate accounted for approximately 13% of total metabolism. In sum, XenoNet facilitated prediction of reactive metabolite structures, whereas quantitative experimental studies provided a tractable approach to validate actual bioactivation pathways for meclofenamate. Our results provide a foundation for assessing reactive metabolite load more accurately for future comparative studies with other NSAIDs and drugs in general. SIGNIFICANCE STATEMENT: Meclofenamate bioactivation may initiate hepatotoxicity, yet common risk assessment approaches are often cumbersome and inefficient and yield qualitative insights that do not scale relative bioactivation risks. We developed and applied innovative computational modeling and quantitative kinetics to identify and validate meclofenamate bioactivation pathways and relevance as a function of time and concentration. This strategy yielded novel insights on meclofenamate bioactivation and provides a tractable approach to more accurately and efficiently assess other drug bioactivations and correlate risks to toxicological outcomes.


Assuntos
Anti-Inflamatórios não Esteroides/farmacocinética , Ácido Meclofenâmico/farmacocinética , Ativação Metabólica , Benzoquinonas/metabolismo , Cromatografia Líquida , Glutationa/metabolismo , Humanos , Espectrometria de Massas , Microssomos Hepáticos/metabolismo , Modelos Químicos , Espectrometria de Fluorescência
7.
J Chem Inf Model ; 60(10): 4702-4716, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-32881497

RESUMO

Adverse drug metabolism often severely impacts patient morbidity and mortality. Unfortunately, drug metabolism experimental assays are costly, inefficient, and slow. Instead, computational modeling could rapidly flag potentially toxic molecules across thousands of candidates in the early stages of drug development. Most metabolism models focus on predicting sites of metabolism (SOMs): the specific substrate atoms targeted by metabolic enzymes. However, SOMs are merely a proxy for metabolic structures: knowledge of an SOM does not explicitly provide the actual metabolite structure. Without an explicit metabolite structure, computational systems cannot evaluate the new molecule's properties. For example, the metabolite's reactivity cannot be automatically predicted, a crucial limitation because reactive drug metabolites are a key driver of adverse drug reactions (ADRs). Additionally, further metabolic events cannot be forecast, even though the metabolic path of the majority of substrates includes two or more sequential steps. To overcome the myopia of the SOM paradigm, this study constructs a well-defined system-termed the metabolic forest-for generating exact metabolite structures. We validate the metabolic forest with the substrate and product structures from a large, chemically diverse, literature-derived dataset of 20 736 records. The metabolic forest finds a pathway linking each substrate and product for 79.42% of these records. By performing a breadth-first search of depth two or three, we improve performance to 88.43 and 88.77%, respectively. The metabolic forest includes a specialized algorithm for producing accurate quinone structures, the most common type of reactive metabolite. To our knowledge, this quinone structure algorithm is the first of its kind, as the diverse mechanisms of quinone formation are difficult to systematically reproduce. We validate the metabolic forest on a previously published dataset of 576 quinone reactions, predicting their structures with a depth three performance of 91.84%. The metabolic forest accurately enumerates metabolite structures, enabling promising new directions such as joint metabolism and reactivity modeling.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Preparações Farmacêuticas , Florestas , Humanos
8.
J Chem Inf Model ; 60(7): 3431-3449, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32525671

RESUMO

Drug metabolism is a common cause of adverse drug reactions. Drug molecules can be metabolized into reactive metabolites, which can conjugate to biomolecules, like protein and DNA, in a process termed bioactivation. To mitigate adverse reactions caused by bioactivation, both experimental and computational screening assays are utilized. Experimental assays for assessing the formation of reactive metabolites are low throughput and expensive to perform, so they are often reserved until later stages of the drug development pipeline when the drug candidate pools are already significantly narrowed. In contrast, computational methods are high throughput and cheap to perform to screen thousands to millions of compounds for potentially toxic molecules during the early stages of the drug development pipeline. Commonly used computational methods focus on detecting and structurally characterizing reactive metabolite-biomolecule adducts or predicting sites on a drug molecule that are liable to form reactive metabolites. However, such methods are often only concerned with the structure of the initial drug molecule or of the adduct formed when a biomolecule conjugates to a reactive metabolite. Thus, these methods are likely to miss intermediate metabolites that may lead to subsequent reactive metabolite formation. To address these shortcomings, we create XenoNet, a metabolic network predictor, that can take a pair of a substrate and a target product as input and (1) enumerate pathways, or sequences of intermediate metabolite structures, between the pair, and (2) compute the likelihood of those pathways and intermediate metabolites. We validate XenoNet on a large, chemically diverse data set of 17 054 metabolic networks built from a literature-derived reaction database. Each metabolic network has a defined substrate molecule that has been experimentally observed to undergo metabolism into a defined product metabolite. XenoNet can predict experimentally observed pathways and intermediate metabolites linking the input substrate and product pair with a recall of 88 and 46%, respectively. Using likelihood scoring, XenoNet also achieves a top-one pathway and intermediate metabolite accuracy of 93.6 and 51.9%, respectively. We further validate XenoNet against prior methods for metabolite prediction. XenoNet significantly outperforms all prior methods across multiple metrics. XenoNet is available at https://swami.wustl.edu/xenonet.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Redes e Vias Metabólicas
9.
Chem Res Toxicol ; 32(6): 1151-1164, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-30925039

RESUMO

Lamisil (terbinafine) is an effective, widely prescribed antifungal drug that causes rare idiosyncratic hepatotoxicity. The proposed toxic mechanism involves a reactive metabolite, 6,6-dimethyl-2-hepten-4-ynal (TBF-A), formed through three N-dealkylation pathways. We were the first to characterize them using in vitro studies with human liver microsomes and modeling approaches, yet knowledge of the individual enzymes catalyzing reactions remained unknown. Herein, we employed experimental and computational tools to assess terbinafine metabolism by specific cytochrome P450 isozymes. In vitro inhibitor phenotyping studies revealed six isozymes were involved in one or more N-dealkylation pathways. CYP2C19 and 3A4 contributed to all pathways, and so, we targeted them for steady-state analyses with recombinant isozymes. N-Dealkylation yielding TBF-A directly was catalyzed by CYP2C19 and 3A4 similarly. Nevertheless, CYP2C19 was more efficient than CYP3A4 at N-demethylation and other steps leading to TBF-A. Unlike microsomal reactions, N-denaphthylation was surprisingly efficient for CYP2C19 and 3A4, which was validated by controls. CYP2C19 was the most efficient among all reactions. Nonetheless, CYP3A4 was more selective at steps leading to TBF-A, making it more effective in terbinafine bioactivation based on metabolic split ratios for competing pathways. Model predictions did not extrapolate to quantitative kinetic constants, yet some results for CYP3A4 and CYP2C19 agreed qualitatively with preferred reaction steps and pathways. Clinical data on drug interactions support the CYP3A4 role in terbinafine metabolism, while CYP2C19 remains understudied. Taken together, knowledge of P450s responsible for terbinafine metabolism and TBF-A formation provides a foundation for investigating and mitigating the impact of P450 variations in toxic risks posed to patients.


Assuntos
Citocromo P-450 CYP2C19/metabolismo , Citocromo P-450 CYP3A/metabolismo , Inibidores Enzimáticos/farmacologia , Terbinafina/farmacologia , Biocatálise , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Humanos , Cinética , Modelos Moleculares , Estrutura Molecular , Terbinafina/química , Terbinafina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...