Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 53(2): 417-30, 2008 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-18184996

RESUMO

It has been suggested for quality assurance purposes that linac output variations for helical tomotherapy (HT) be within +/-2% of the long-term average. Due to cancellation of systematic uncertainty and averaging of random uncertainty over multiple beam directions, relative uncertainties in the dose distribution can be significantly lower than those in linac output. The sensitivity of four HT cases with respect to linac output uncertainties was assessed by scaling both modeled and measured systematic and random linac output uncertainties until a dose uncertainty acceptance criterion failed. The dose uncertainty acceptance criterion required the delivered dose to have at least a 95% chance of being within 2% of the planned dose in all of the voxels in the treatment volume. For a random linac output uncertainty of 5% of the long-term mean, the maximum acceptable amplitude of the modeled, sinusoidal, systematic component of the linac output uncertainty for the four cases was 1.8%. Although the measured linac output variations represented values that were outside of the +/-2% tolerance, the acceptance criterion did not fail for any of the four cases until the measured linac output variations were scaled by a factor of almost three. Thus, the +/-2% tolerance in linac output variations for HT is a more conservative tolerance than necessary.


Assuntos
Artefatos , Carga Corporal (Radioterapia) , Modelos Biológicos , Aceleradores de Partículas/instrumentação , Radiometria/métodos , Radioterapia Conformacional/instrumentação , Simulação por Computador , Humanos , Doses de Radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Eficiência Biológica Relativa , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
2.
Phys Med Biol ; 52(20): 6073-91, 2007 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-17921573

RESUMO

Selective subvolume boosting can theoretically improve tumour control probability while maintaining normal tissue complication probabilities similar to those of uniform dose distributions. In this work the abilities of intensity-modulated x-ray therapy (IMXT) and intensity-modulated proton therapy (IMPT) to deliver boosts to multiple subvolumes of varying size and proximities are compared in a thorough phantom study. IMXT plans were created using the step-and-shoot (IMXT-SAS) and helical tomotherapy (IMXT-HT) methods. IMPT plans were created with the spot scanning (IMPT-SS) and distal gradient tracking (IMPT-DGT) methods. IMPT-DGT is a generalization of the distal edge tracking method designed to reduce the number of proton beam spots required to deliver non-uniform dose distributions relative to IMPT-SS. The IMPT methods were delivered over both 180 degrees and 360 degrees arcs. The IMXT-SAS and IMPT-SS methods optimally satisfied the non-uniform dose prescriptions the least and the most, respectively. The IMPT delivery methods reduced the normal tissue integral dose by a factor of about 2 relative to the IMXT delivery methods, regardless of the delivery arc. The IMPT-DGT method reduced the number of proton beam spots by a factor of about 3 relative to the IMPT-SS method.


Assuntos
Modelos Biológicos , Neoplasias/radioterapia , Terapia com Prótons , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Radioterapia de Alta Energia/métodos , Simulação por Computador , Humanos , Imagens de Fantasmas , Dosagem Radioterapêutica , Eficiência Biológica Relativa , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...