Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurochem Res ; 37(3): 574-82, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22081406

RESUMO

We have evidence that 15-F2-isoprostanes (15-F2-IsoPs) regulate excitatory neurotransmitter release in ocular tissues. Although 5-F2-IsoPs are abundantly produced in mammals, their pharmacological actions on neurotransmitter release remain unknown. In the present study, we compared the effect of the 5-F2-IsoP epimer pair, 5-F(2t)-IsoP (C5-OH in ß-position) and 5-epi-5-F(2t)-IsoP (C5-OH in α-position), on K⁺-evoked [³H]D-aspartate release in isolated bovine retina. We further examined the role of prostanoid receptors on the inhibitory action of 5-epi-5-F(2t)-IsoP on [³H]D-aspartate overflow. Isolated bovine retina were prepared for studies of K⁺-evoked release of [³H]D-aspartate using the superfusion method. 5-epi-5-F(2t)-IsoP (0.01 nM to 1 µM), attenuated K⁺-evoked [³H]D-aspartate release in a concentration-dependent manner, with the inhibitory effect of 26.9% (P < 0.001; IC25 = 0.2 µM) being achieved at 1 µM concentration. Its 5-(S)-OH-epimer, 5-F(2t)-IsoP (0.1 nM-1 µM), exhibited an inhibitory biphasic action, yielding a maximal response of 35.7% (P < 0.001) at 10 nM concentration of the drug (IC25 value of 3 nM). Although the prostanoid-receptor antagonists, AH 6809 (10 µM; EP1₋3/DP) and BAY-u3405 (10 µM; DP/Tx) exhibited no effect on 5-epi-5-F(2t)-IsoP (10 nM-1 µM)-mediated inhibition, SC-19220 (1 µM; EP1) completely reversed 5-epi-5-F(2t)-IsoP (0.1 µM and 1 µM)-induced attenuation of K⁺-evoked [³H]D-aspartate release. Similarly, both SC-51322 (10 µM; EP1 and AH 23848 (1 µM; EP4) reversed the inhibitory action elicited by 5-epi-5-F(2t)-IsoP (0.1 µM) on the neurotransmitter release. We conclude that the 5-F2-IsoP epimer pair, 5-F(2t)-IsoP and 5-epi-5-F(2t)-IsoP, attenuate K⁺-induced [³H]D-aspartate release in isolated bovine retina presumably via prostanoid receptor dependent mechanisms. The trans-orientation of the allylic hydroxyl group at position C5 accounts for the apparent biphasic response exhibited by 5-F(2t)-IsoP on excitatory neurotransmitter release.


Assuntos
Ácido D-Aspártico/metabolismo , F2-Isoprostanos/metabolismo , Retina/metabolismo , Animais , Bovinos , Técnicas In Vitro , Trítio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...