Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(11): 116204, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-37001112

RESUMO

Monolayers of transition metal dichalcogenides (TMDs) in the 2H structural phase have been recently classified as higher-order topological insulators (HOTIs), protected by C_{3} rotation symmetry. In addition, theoretical calculations show an orbital Hall plateau in the insulating gap of TMDs, characterized by an orbital Chern number. We explore the correlation between these two phenomena in TMD monolayers in two structural phases: the noncentrosymmetric 2H and the centrosymmetric 1T. Using density functional theory, we confirm the characteristics of 2H TMDs and reveal that 1T TMDs are identified by a Z_{4} topological invariant. As a result, when cut along appropriate directions, they host conducting edge states, which cross their bulk energy-band gaps and can transport orbital angular momentum. Our linear response calculations thus indicate that the HOTI phase is accompanied by an orbital Hall effect. Using general symmetry arguments, we establish a connection between the two phenomena with potential implications for orbitronics and spin orbitronics.

2.
Nanoscale ; 14(47): 17561-17570, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36346287

RESUMO

Elucidating cellulose-lignin interactions at the molecular and nanometric scales is an important research topic with impacts on several pathways of biomass valorization. Here, the interaction forces between a cellulosic substrate and lignin are investigated. Atomic force microscopy with lignin-coated tips is employed to probe the site-specific adhesion to a cellulose film in liquid water. Over seven thousand force-curves are analyzed by a machine-learning approach to cluster the experimental data into types of cellulose-tip interactions. The molecular mechanisms for distinct types of cellulose-lignin interactions are revealed by molecular dynamics simulations of lignin globules interacting with different cellulose Iß crystal facets. This unique combination of experimental force-curves, data-driven analysis, and molecular simulations opens a new approach of investigation and updates the understanding of cellulose-lignin interactions at the nanoscale.


Assuntos
Celulose , Lignina , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Aprendizado de Máquina
3.
Phys Rev Lett ; 129(4): 046101, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35939018

RESUMO

Using a combination of in situ high-resolution transmission electron microscopy and density functional theory, we report the formation and rupture of ZrO_{2} atomic ionic wires. Near rupture, under tensile stress, the system favors the spontaneous formation of oxygen vacancies, a critical step in the formation of the monatomic bridge. In this length scale, vacancies provide ductilelike behavior, an unexpected mechanical behavior for ionic systems. Our results add an ionic compound to the very selective list of materials that can form monatomic wires and they contribute to the fundamental understanding of the mechanical properties of ceramic materials at the nanoscale.

4.
Langmuir ; 38(3): 1124-1130, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35026945

RESUMO

Understanding the role of microscopic attributes in nanocomposites allows one to control and, therefore, accelerate experimental system designs. In this work, we extracted the relevant parameters controlling the graphene oxide binding strength to cellulose by combining first-principles calculations and machine learning algorithms. We were able to classify the systems among two classes with higher and lower binding energies, which are well defined based on the isolated graphene oxide features. Using theoretical X-ray photoelectron spectroscopy analysis, we show the extraction of these relevant features. In addition, we demonstrate the possibility of refined control within a machine learning regression between the binding energy values and the system's characteristics. Our work presents a guiding map to control graphene oxide/cellulose interaction.


Assuntos
Grafite , Nanocompostos , Celulose , Aprendizado de Máquina
5.
J Chem Phys ; 154(22): 224102, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34241233

RESUMO

Polyphenols are natural molecules of crucial importance in many applications, of which tannic acid (TA) is one of the most abundant and established. Most high-value applications require precise control of TA interactions with the system of interest. However, the molecular structure of TA is still not comprehended at the atomic level, of which all electronic and reactivity properties depend. Here, we combine an enhanced sampling global optimization method with density functional theory (DFT)-based calculations to explore the conformational space of TA assisted by unsupervised machine learning visualization and then investigate its lowest energy conformers. We study the external environment's effect on the TA structure and properties. We find that vacuum favors compact structures by stabilizing peripheral atoms' weak interactions, while in water, the molecule adopts more open conformations. The frontier molecular orbitals of the conformers with the lowest harmonic vibrational free energy have a HOMO-LUMO energy gap of 2.21 (3.27) eV, increasing to 2.82 (3.88) eV in water, at the DFT generalized gradient approximation (and hybrid) level of theory. Structural differences also change the distribution of potential reactive sites. We establish the fundamental importance of accurate structural consideration in determining TA and related polyphenol interactions in relevant technological applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...