Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Geohealth ; 7(12): e2022GH000716, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38155731

RESUMO

The protection and management of water resources continues to be challenged by multiple and ongoing factors such as shifts in demographic, social, economic, and public health requirements. Physical limitations placed on access to potable supplies include natural and human-caused factors such as aquifer depletion, aging infrastructure, saltwater intrusion, floods, and drought. These factors, although varying in magnitude, spatial extent, and timing, can exacerbate the potential for contaminants of concern (CECs) to be present in sources of drinking water, infrastructure, premise plumbing and associated tap water. This monograph examines how current and emerging scientific efforts and technologies increase our understanding of the range of CECs and drinking water issues facing current and future populations. It is not intended to be read in one sitting, but is instead a starting point for scientists wanting to learn more about the issues surrounding CECs. This text discusses the topical evolution CECs over time (Section 1), improvements in measuring chemical and microbial CECs, through both analysis of concentration and toxicity (Section 2) and modeling CEC exposure and fate (Section 3), forms of treatment effective at removing chemical and microbial CECs (Section 4), and potential for human health impacts from exposure to CECs (Section 5). The paper concludes with how changes to water quantity, both scarcity and surpluses, could affect water quality (Section 6). Taken together, these sections document the past 25 years of CEC research and the regulatory response to these contaminants, the current work to identify and monitor CECs and mitigate exposure, and the challenges facing the future.

2.
Sci Total Environ ; 868: 161672, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36657670

RESUMO

In the United States and globally, contaminant exposure in unregulated private-well point-of-use tapwater (TW) is a recognized public-health data gap and an obstacle to both risk-management and homeowner decision making. To help address the lack of data on broad contaminant exposures in private-well TW from hydrologically-vulnerable (alluvial, karst) aquifers in agriculturally-intensive landscapes, samples were collected in 2018-2019 from 47 northeast Iowa farms and analyzed for 35 inorganics, 437 unique organics, 5 in vitro bioassays, and 11 microbial assays. Twenty-six inorganics and 51 organics, dominated by pesticides and related transformation products (35 herbicide-, 5 insecticide-, and 2 fungicide-related), were observed in TW. Heterotrophic bacteria detections were near ubiquitous (94 % of the samples), with detection of total coliform bacteria in 28 % of the samples and growth on at least one putative-pathogen selective media across all TW samples. Health-based hazard index screening levels were exceeded frequently in private-well TW and attributed primarily to inorganics (nitrate, uranium). Results support incorporation of residential treatment systems to protect against contaminant exposure and the need for increased monitoring of rural private-well homes. Continued assessment of unmonitored and unregulated private-supply TW is needed to model contaminant exposures and human-health risks.


Assuntos
Água Potável , Água Subterrânea , Poluentes Químicos da Água , Estados Unidos , Humanos , Iowa , Poluentes Químicos da Água/análise , Agricultura , Monitoramento Ambiental/métodos
3.
Environ Int ; 171: 107701, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36542998

RESUMO

BACKGROUND: Bottled water (BW) consumption in the United States and globally has increased amidst heightened concern about environmental contaminant exposures and health risks in drinking water supplies, despite a paucity of directly comparable, environmentally-relevant contaminant exposure data for BW. This study provides insight into exposures and cumulative risks to human health from inorganic/organic/microbial contaminants in BW. METHODS: BW from 30 total domestic US (23) and imported (7) sources, including purified tapwater (7) and spring water (23), were analyzed for 3 field parameters, 53 inorganics, 465 organics, 14 microbial metrics, and in vitro estrogen receptor (ER) bioactivity. Health-benchmark-weighted cumulative hazard indices and ratios of organic-contaminant in vitro exposure-activity cutoffs were assessed for detected regulated and unregulated inorganic and organic contaminants. RESULTS: 48 inorganics and 45 organics were detected in sampled BW. No enforceable chemical quality standards were exceeded, but several inorganic and organic contaminants with maximum contaminant level goal(s) (MCLG) of zero (no known safe level of exposure to vulnerable sub-populations) were detected. Among these, arsenic, lead, and uranium were detected in 67 %, 17 %, and 57 % of BW, respectively, almost exclusively in spring-sourced samples not treated by advanced filtration. Organic MCLG exceedances included frequent detections of disinfection byproducts (DBP) in tapwater-sourced BW and sporadic detections of DBP and volatile organic chemicals in BW sourced from tapwater and springs. Precautionary health-based screening levels were exceeded frequently and attributed primarily to DBP in tapwater-sourced BW and co-occurring inorganic and organic contaminants in spring-sourced BW. CONCLUSION: The results indicate that simultaneous exposures to multiple drinking-water contaminants of potential human-health concern are common in BW. Improved understandings of human exposures based on more environmentally realistic and directly comparable point-of-use exposure characterizations, like this BW study, are essential to public health because drinking water is a biological necessity and, consequently, a high-vulnerability vector for human contaminant exposures.


Assuntos
Água Potável , Compostos Orgânicos Voláteis , Poluentes Químicos da Água , Humanos , Estados Unidos , Abastecimento de Água , Exposição Ambiental/efeitos adversos , Poluentes Químicos da Água/análise
4.
ACS ES T Water ; 2(10): 1772-1788, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36277121

RESUMO

In the United States (US), private-supply tapwater (TW) is rarely monitored. This data gap undermines individual/community risk-management decision-making, leading to an increased probability of unrecognized contaminant exposures in rural and remote locations that rely on private wells. We assessed point-of-use (POU) TW in three northern plains Tribal Nations, where ongoing TW arsenic (As) interventions include expansion of small community water systems and POU adsorptive-media treatment for Strong Heart Water Study participants. Samples from 34 private-well and 22 public-supply sites were analyzed for 476 organics, 34 inorganics, and 3 in vitro bioactivities. 63 organics and 30 inorganics were detected. Arsenic, uranium (U), and lead (Pb) were detected in 54%, 43%, and 20% of samples, respectively. Concentrations equivalent to public-supply maximum contaminant level(s) (MCL) were exceeded only in untreated private-well samples (As 47%, U 3%). Precautionary health-based screening levels were exceeded frequently, due to inorganics in private supplies and chlorine-based disinfection byproducts in public supplies. The results indicate that simultaneous exposures to co-occurring TW contaminants are common, warranting consideration of expanded source, point-of-entry, or POU treatment(s). This study illustrates the importance of increased monitoring of private-well TW, employing a broad, environmentally informative analytical scope, to reduce the risks of unrecognized contaminant exposures.

5.
ACS ES T Water ; 2(11): 2201-2210, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37552727

RESUMO

There have been over 507 million cases of COVID-19, the disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulting in 6 million deaths globally. Wastewater surveillance has emerged as a valuable tool in understanding SARS-CoV-2 burden in communities. The National Wastewater Surveillance System (NWSS) partnered with the United States Geological Survey (USGS) to implement a high-frequency sampling program. This report describes basic surveillance and sampling statistics as well as a comparison of SARS-CoV-2 trends between high-frequency sampling 3-5 times per week, referred to as USGS samples, and routine sampling 1-2 times per week, referred to as NWSS samples. USGS samples provided a more nuanced impression of the changes in wastewater trends, which could be important in emergency response situations. Despite the rapid implementation time frame, USGS samples had similar data quality and testing turnaround times as NWSS samples. Ensuring there is a reliable sample collection and testing plan before an emergency arises will aid in the rapid implementation of a high-frequency sampling approach. High-frequency sampling requires a constant flow of information and supplies throughout sample collection, testing, analysis, and data sharing. High-frequency sampling may be a useful approach for increased resolution of disease trends in emergency response.

6.
Sci Total Environ ; 788: 147721, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34134358

RESUMO

A pilot-scale expanded target assessment of mixtures of inorganic and organic contaminants in point-of-consumption drinking water (tapwater, TW) was conducted in Puerto Rico (PR) to continue to inform TW exposures and corresponding estimations of cumulative human-health risks across the US. In August 2018, a spatial synoptic pilot assessment of than 524 organic and 37 inorganic chemicals was conducted in 14 locations (7 home; 7 commercial) across PR. A follow-up 3-day temporal assessment of TW variability was conducted in December 2018 at two of the synoptic locations (1 home, 1 commercial) and included daily pre- and post-flush samples. Concentrations of regulated and unregulated TW contaminants were used to calculate cumulative in vitro bioactivity ratios and Hazard Indices (HI) based on existing human-health benchmarks. Synoptic results confirmed that human exposures to inorganic and organic contaminant mixtures, which are rarely monitored together in drinking water at the point of consumption, occurred across PR and consisted of elevated concentrations of inorganic contaminants (e.g., lead, copper), disinfection byproducts (DBP), and to a lesser extent per/polyfluoroalkyl substances (PFAS) and phthalates. Exceedances of human-health benchmarks in every synoptic TW sample support further investigation of the potential cumulative risk to vulnerable populations in PR and emphasize the importance of continued broad characterization of drinking-water exposures at the tap with analytical capabilities that better represent the complexity of both inorganic and organic contaminant mixtures known to occur in ambient source waters. Such health-based monitoring data are essential to support public engagement in source water sustainability and treatment and to inform consumer point-of-use treatment decision making in PR and throughout the US.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Água Potável/análise , Monitoramento Ambiental , Humanos , Porto Rico , Água , Poluentes Químicos da Água/análise
7.
Environ Int ; 152: 106487, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33752165

RESUMO

BACKGROUND: Humans are primary drivers of environmental contamination worldwide, including in drinking-water resources. In the United States (US), federal and state agencies regulate and monitor public-supply drinking water while private-supply monitoring is rare; the current lack of directly comparable information on contaminant-mixture exposures and risks between private- and public-supplies undermines tapwater (TW) consumer decision-making. METHODS: We compared private- and public-supply residential point-of-use TW at Cape Cod, Massachusetts, where both supplies share the same groundwater source. TW from 10 private- and 10 public-supply homes was analyzed for 487 organic, 38 inorganic, 8 microbial indicators, and 3 in vitro bioactivities. Concentrations were compared to existing protective health-based benchmarks, and aggregated Hazard Indices (HI) of regulated and unregulated TW contaminants were calculated along with ratios of in vitro exposure-activity cutoffs. RESULTS: Seventy organic and 28 inorganic constituents were detected in TW. Median detections were comparable, but median cumulative concentrations were substantially higher in public supply due to 6 chlorine-disinfected samples characterized by disinfection byproducts and corresponding lower heterotrophic plate counts. Public-supply applicable maximum contaminant (nitrate) and treatment action (lead and copper) levels were exceeded in private-supply TW samples only. Exceedances of health-based HI screening levels of concern were common to both TW supplies. DISCUSSION: These Cape Cod results indicate comparable cumulative human-health concerns from contaminant exposures in private- and public-supply TW in a shared source-water setting. Importantly, although this study's analytical coverage exceeds that currently feasible for water purveyors or homeowners, it nevertheless is a substantial underestimation of the full breadth of contaminant mixtures documented in the environment and potentially present in drinking water. CONCLUSION: Regardless of the supply, increased public engagement in source-water protection and drinking-water treatment, including consumer point-of-use treatment, is warranted to reduce risks associated with long-term TW contaminant exposures, especially in vulnerable populations.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Purificação da Água , Monitoramento Ambiental , Humanos , Massachusetts , Estados Unidos , Água , Poluentes Químicos da Água/análise , Abastecimento de Água
8.
Environ Sci Technol ; 55(8): 5012-5023, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33729798

RESUMO

Arsenic from geologic sources is widespread in groundwater within the United States (U.S.). In several areas, groundwater arsenic concentrations exceed the U.S. Environmental Protection Agency maximum contaminant level of 10 µg per liter (µg/L). However, this standard applies only to public-supply drinking water and not to private-supply, which is not federally regulated and is rarely monitored. As a result, arsenic exposure from private wells is a potentially substantial, but largely hidden, public health concern. Machine learning models using boosted regression trees (BRT) and random forest classification (RFC) techniques were developed to estimate probabilities and concentration ranges of arsenic in private wells throughout the conterminous U.S. Three BRT models were fit separately to estimate the probability of private well arsenic concentrations exceeding 1, 5, or 10 µg/L whereas the RFC model estimates the most probable category (≤5, >5 to ≤10, or >10 µg/L). Overall, the models perform best at identifying areas with low concentrations of arsenic in private wells. The BRT 10 µg/L model estimates for testing data have an overall accuracy of 91.2%, sensitivity of 33.9%, and specificity of 98.2%. Influential variables identified across all models included average annual precipitation and soil geochemistry. Models were developed in collaboration with public health experts to support U.S.-based studies focused on health effects from arsenic exposure.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Arsênio/análise , Monitoramento Ambiental , Humanos , Aprendizado de Máquina , Estados Unidos , Poluentes Químicos da Água/análise , Abastecimento de Água , Poços de Água
9.
Sci Total Environ ; 719: 137236, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32126404

RESUMO

Safe drinking water at the point of use (tapwater, TW) is a public-health priority. TW exposures and potential human-health concerns of 540 organics and 35 inorganics were assessed in 45 Chicago-area United States (US) homes in 2017. No US Environmental Protection Agency (EPA) enforceable Maximum Contaminant Level(s) (MCL) were exceeded in any residential or water treatment plant (WTP) pre-distribution TW sample. Ninety percent (90%) of organic analytes were not detected in treated TW, emphasizing the high quality of the Lake Michigan drinking-water source and the efficacy of the drinking-water treatment and monitoring. Sixteen (16) organics were detected in >25% of TW samples, with about 50 detected at least once. Low-level TW exposures to unregulated disinfection byproducts (DBP) of emerging concern, per/polyfluoroalkyl substances (PFAS), and three pesticides were ubiquitous. Common exceedances of non-enforceable EPA MCL Goal(s) (MCLG) of zero for arsenic [As], lead [Pb], uranium [U], bromodichloromethane, and tribromomethane suggest potential human-health concerns and emphasize the continuing need for improved understanding of cumulative effects of low-concentration mixtures on vulnerable sub-populations. Because DBP dominated TW organics, residential-TW concentrations are potentially predictable with expanded pre-distribution DBP monitoring. However, several TW chemicals, notably Pb and several infrequently detected organic compounds, were not readily explained by pre-distribution samples, illustrating the need for continued broad inorganic/organic TW characterization to support consumer assessment of acceptable risk and point-of-use treatment options.


Assuntos
Purificação da Água , Chicago , Água Potável , Michigan , Praguicidas , Estados Unidos , Poluentes Químicos da Água
10.
Environ Sci Technol ; 52(23): 13972-13985, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30460851

RESUMO

Safe drinking water at the point-of-use (tapwater, TW) is a United States public health priority. Multiple lines of evidence were used to evaluate potential human health concerns of 482 organics and 19 inorganics in TW from 13 (7 public supply, 6 private well self-supply) home and 12 (public supply) workplace locations in 11 states. Only uranium (61.9 µg L-1, private well) exceeded a National Primary Drinking Water Regulation maximum contaminant level (MCL: 30 µg L-1). Lead was detected in 23 samples (MCL goal: zero). Seventy-five organics were detected at least once, with median detections of 5 and 17 compounds in self-supply and public supply samples, respectively (corresponding maxima: 12 and 29). Disinfection byproducts predominated in public supply samples, comprising 21% of all detected and 6 of the 10 most frequently detected. Chemicals designed to be bioactive (26 pesticides, 10 pharmaceuticals) comprised 48% of detected organics. Site-specific cumulative exposure-activity ratios (∑EAR) were calculated for the 36 detected organics with ToxCast data. Because these detections are fractional indicators of a largely uncharacterized contaminant space, ∑EAR in excess of 0.001 and 0.01 in 74 and 26% of public supply samples, respectively, provide an argument for prioritized assessment of cumulative effects to vulnerable populations from trace-level TW exposures.


Assuntos
Água Potável , Praguicidas , Poluentes Químicos da Água , Monitoramento Ambiental , Humanos , Estados Unidos , Abastecimento de Água , Local de Trabalho
12.
Sci Total Environ ; 563-564: 340-50, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27139306

RESUMO

Animal waste, stream water, and streambed sediment from 19 small (<32km(2)) watersheds in 12U.S. states having either no major animal agriculture (control, n=4), or predominantly beef (n=4), dairy (n=3), swine (n=5), or poultry (n=3) were tested for: 1) cholesterol, coprostanol, estrone, and fecal indicator bacteria (FIB) concentrations, and 2) shiga-toxin producing and enterotoxigenic Escherichia coli, Salmonella, Campylobacter, and pathogenic and vancomycin-resistant enterococci by polymerase chain reaction (PCR) on enrichments, and/or direct quantitative PCR. Pathogen genes were most frequently detected in dairy wastes, followed by beef, swine and poultry wastes in that order; there was only one detection of an animal-source-specific pathogen gene (stx1) in any water or sediment sample in any control watershed. Post-rainfall pathogen gene numbers in stream water were significantly correlated with FIB, cholesterol and coprostanol concentrations, and were most highly correlated in dairy watershed samples collected from 3 different states. Although collected across multiple states and ecoregions, animal-waste gene profiles were distinctive via discriminant analysis. Stream water gene profiles could also be discriminated by the watershed animal type. Although pathogen genes were not abundant in stream water or streambed samples, PCR on enrichments indicated that many genes were from viable organisms, including several (shiga-toxin producing or enterotoxigenic E. coli, Salmonella, vancomycin-resistant enterococci) that could potentially affect either human or animal health. Pathogen gene numbers and types in stream water samples were influenced most by animal type, by local factors such as whether animals had stream access, and by the amount of local rainfall, and not by studied watershed soil or physical characteristics. Our results indicated that stream water in small agricultural U.S. watersheds was susceptible to pathogen gene inputs under typical agricultural practices and environmental conditions. Pathogen gene profiles may offer the potential to address both source of, and risks associated with, fecal pollution.


Assuntos
Criação de Animais Domésticos , Bactérias/isolamento & purificação , Fezes/química , Fezes/microbiologia , Rios/microbiologia , Animais , Bactérias/genética , Bovinos , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Genes Bacterianos , Aves Domésticas , Shigella/genética , Shigella/isolamento & purificação , Sus scrofa , Estados Unidos
13.
Mar Pollut Bull ; 107(2): 489-98, 2016 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-27177500

RESUMO

Bed sediment samples from 79 coastal New York and New Jersey, USA sites were analyzed for 75 compounds including wastewater associated contaminants, PAHs, and other organic compounds to assess the post-Hurricane Sandy distribution of organic contaminants among six regions. These results provide the first assessment of wastewater compounds, hormones, and PAHs in bed sediment for this region. Concentrations of most wastewater contaminants and PAHs were highest in the most developed region (Upper Harbor/Newark Bay, UHNB) and reflected the wastewater inputs to this area. Although the lack of pre-Hurricane Sandy data for most of these compounds make it impossible to assess the effect of the storm on wastewater contaminant concentrations, PAH concentrations in the UHNB region reflect pre-Hurricane Sandy conditions in this region. Lower hormone concentrations than predicted by the total organic carbon relation occurred in UHNB samples, suggesting that hormones are being degraded in the UHNB region.


Assuntos
Tempestades Ciclônicas , Monitoramento Ambiental , Hormônios/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Águas Residuárias/química , Poluentes Químicos da Água/análise , New Jersey , New York , Compostos Orgânicos
14.
Sci Total Environ ; 466-467: 1085-93, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23994821

RESUMO

Fluids co-produced with oil and gas production (produced waters) are often brines that contain elevated concentrations of bromide. Bromide is an important precursor of several toxic disinfection by-products (DBPs) and the treatment of produced water may lead to more brominated DBPs. To determine if wastewater treatment plants that accept produced waters discharge greater amounts of brominated DBPs, water samples were collected in Pennsylvania from four sites along a large river including an upstream site, a site below a publicly owned wastewater treatment plant (POTW) outfall (does not accept produced water), a site below an oil and gas commercial wastewater treatment plant (CWT) outfall, and downstream of the POTW and CWT. Of 29 DBPs analyzed, the site at the POTW outfall had the highest number detected (six) ranging in concentration from 0.01 to 0.09 µg L(-1) with a similar mixture of DBPs that have been detected at POTW outfalls elsewhere in the United States. The DBP profile at the CWT outfall was much different, although only two DBPs, dibromochloronitromethane (DBCNM) and chloroform, were detected, DBCNM was found at relatively high concentrations (up to 8.5 µg L(-1)). The water at the CWT outfall also had a mixture of inorganic and organic precursors including elevated concentrations of bromide (75 mg L(-1)) and other organic DBP precursors (phenol at 15 µg L(-1)). To corroborate these DBP results, samples were collected in Pennsylvania from additional POTW and CWT outfalls that accept produced waters. The additional CWT also had high concentrations of DBCNM (3.1 µg L(-1)) while the POTWs that accept produced waters had elevated numbers (up to 15) and concentrations of DBPs, especially brominated and iodinated THMs (up to 12 µg L(-1) total THM concentration). Therefore, produced water brines that have been disinfected are potential sources of DBPs along with DBP precursors to streams wherever these wastewaters are discharged.


Assuntos
Desinfetantes/análise , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Desinfetantes/química , Desinfecção , Cromatografia Gasosa-Espectrometria de Massas , Halogenação , Pennsylvania , Rios , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/química
15.
Sci Total Environ ; 443: 700-16, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23228716

RESUMO

The Potomac River basin is an area where a high prevalence of abnormalities such as testicular oocytes (TO), skin lesions, and mortality has been observed in smallmouth bass (SMB, Micropterus dolomieu). Previous research documented a variety of chemicals in regional streams, implicating chemical exposure as one plausible explanation for these biological effects. Six stream sites in the Potomac basin (and one out-of-basin reference site) were sampled to provide an assessment of chemicals in these streams. Potential early life-stage exposure to chemicals detected was assessed by collecting samples in and around SMB nesting areas. Target chemicals included those known to be associated with important agricultural and municipal wastewater sources in the Potomac basin. The prevalence and severity of TO in SMB were also measured to determine potential relations between chemistry and biological effects. A total of 39 chemicals were detected at least once in the discrete-water samples, with atrazine, caffeine, deethylatrazine, simazine, and iso-chlorotetracycline being most frequently detected. Of the most frequently detected chemicals, only caffeine was detected in water from the reference site. No biogenic hormones/sterols were detected in the discrete-water samples. In contrast, 100 chemicals (including six biogenic hormones/sterols) were found in a least one passive-water sample, with 25 being detected at all such samples. In addition, 46 chemicals (including seven biogenic hormones/sterols) were found in the bed-sediment samples, with caffeine, cholesterol, indole, para-cresol, and sitosterol detected in all such samples. The number of herbicides detected in discrete-water samples per site had a significant positive relation to TO(rank) (a nonparametric indicator of TO), with significant positive relations between TO(rank) and atrazine concentrations in discrete-water samples and to total hormone/sterol concentration in bed-sediment samples. Such significant correlations do not necessarily imply causation, as these chemical compositions and concentrations likely do not adequately reflect total SMB exposure history, particularly during critical life stages.


Assuntos
Bass/metabolismo , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Animais , Bass/fisiologia , Cromatografia Gasosa-Espectrometria de Massas , Controle de Qualidade , Rios
16.
J Environ Qual ; 38(1): 248-58, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19141815

RESUMO

The objective of this study was to compare fecal indicator bacteria (FIB) (fecal coliforms, Escherichia coli [EC], and enterococci [ENT]) concentrations with a wide array of typical organic wastewater chemicals and selected bacterial genes as indicators of fecal pollution in water samples collected at or near 18 surface water drinking water intakes. Genes tested included esp (indicating human-pathogenic ENT) and nine genes associated with various animal sources of shiga-toxin-producing EC (STEC). Fecal pollution was indicated by genes and/or chemicals for 14 of the 18 tested samples, with little relation to FIB standards. Of 13 samples with <50 EC 100 mL(-1), human pharmaceuticals or chemical indicators of wastewater treatment plant effluent occurred in six, veterinary antibiotics were detected in three, and stx1 or stx2 genes (indicating varying animal sources of STEC) were detected in eight. Only the EC eaeA gene was positively correlated with FIB concentrations. Human-source fecal pollution was indicated by the esp gene and the human pharmaceutical carbamazepine in one of the nine samples that met all FIB recreational water quality standards. Escherichia coli rfbO157 and stx2c genes, which are typically associated with cattle sources and are of potential human health significance, were detected in one sample in the absence of tested chemicals. Chemical and gene-based indicators of fecal contamination may be present even when FIB standards are met, and some may, unlike FIB, indicate potential sources. Application of multiple water quality indicators with variable environmental persistence and fate may yield greater confidence in fecal pollution assessment and may inform remediation decisions.


Assuntos
Enterococcus faecalis/genética , Compostos Orgânicos/análise , Escherichia coli Shiga Toxigênica/genética , Microbiologia da Água , Abastecimento de Água/análise , Fezes/química , Fezes/microbiologia , Água Doce/análise , Genes Bacterianos , Humanos , Preparações Farmacêuticas/análise , Fatores de Risco , Poluentes Químicos da Água/análise , Poluição da Água/análise
17.
Environ Monit Assess ; 155(1-4): 281-307, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18677547

RESUMO

Vernal pools are sensitive environments that provide critical habitat for many species, including amphibians. These small water bodies are not always protected by pesticide label requirements for no-spray buffer zones, and the occurrence of pesticides in them is poorly documented. In this study, we investigated the occurrence of glyphosate, its primary degradation product aminomethylphosphonic acid, and additional pesticides in vernal pools and adjacent flowing waters. Most sampling sites were chosen to be in areas where glyphosate was being used either in production agriculture or for nonindigenous plant control. The four site locations were in otherwise protected areas (e.g., in a National Park). When possible, water samples were collected both before and after glyphosate application in 2005 and 2006. Twenty-eight pesticides or pesticide degradation products were detected in the study, and as many as 11 were identified in individual samples. Atrazine was detected most frequently and concentrations exceeded the freshwater aquatic life standard of 1.8 micrograms per liter (microg/l) in samples from Rands Ditch and Browns Ditch in DeSoto National Wildlife Refuge. Glyphosate was measured at the highest concentration (328 microg/l) in a sample from Riley Spring Pond in Rock Creek National Park. This concentration exceeded the freshwater aquatic life standard for glyphosate of 65 microg/l. Aminomethylphosphonic acid, triclopyr, and nicosulfuron also were detected at concentrations greater than 3.0 microg/l.


Assuntos
Atrazina/análise , Monitoramento Ambiental , Água Doce/química , Glicina/análogos & derivados , Praguicidas/análise , Poluentes Químicos da Água/análise , District of Columbia , Glicina/análise , Maryland , Estados Unidos , Wyoming , Glifosato
18.
Sci Total Environ ; 402(2-3): 201-16, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18433838

RESUMO

Numerous studies have shown that a variety of manufactured and natural organic compounds such as pharmaceuticals, steroids, surfactants, flame retardants, fragrances, plasticizers and other chemicals often associated with wastewaters have been detected in the vicinity of municipal wastewater discharges and livestock agricultural facilities. To provide new data and insights about the environmental presence of some of these chemicals in untreated sources of drinking water in the United States targeted sites were sampled and analyzed for 100 analytes with sub-parts per billion detection capabilities. The sites included 25 ground- and 49 surface-water sources of drinking water serving populations ranging from one family to over 8 million people. Sixty-three of the 100 targeted chemicals were detected in at least one water sample. Interestingly, in spite of the low detection levels 60% of the 36 pharmaceuticals (including prescription drugs and antibiotics) analyzed were not detected in any water sample. The five most frequently detected chemicals targeted in surface water were: cholesterol (59%, natural sterol), metolachlor (53%, herbicide), cotinine (51%, nicotine metabolite), beta-sitosterol (37%, natural plant sterol), and 1,7-dimethylxanthine (27%, caffeine metabolite); and in ground water: tetrachloroethylene (24%, solvent), carbamazepine (20%, pharmaceutical), bisphenol-A (20%, plasticizer), 1,7-dimethylxanthine (16%, caffeine metabolite), and tri (2-chloroethyl) phosphate (12%, fire retardant). A median of 4 compounds were detected per site indicating that the targeted chemicals generally occur in mixtures (commonly near detection levels) in the environment and likely originate from a variety of animal and human uses and waste sources. These data will help prioritize and determine the need, if any, for future occurrence, fate and transport, and health-effects research for subsets of these chemicals and their degradates most likely to be found in water resources used for drinking water in the United States.


Assuntos
Compostos Orgânicos/análise , Preparações Farmacêuticas/análise , Poluentes Químicos da Água/análise , Abastecimento de Água/análise , Sensibilidade e Especificidade , Estados Unidos
19.
Sci Total Environ ; 321(1-3): 201-17, 2004 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-15050396

RESUMO

Analyses of samples of untreated ground water from 413 community-, non-community- (such as restaurants), and domestic-supply wells throughout the US were used to determine the frequency of detection of halogenated volatile organic compounds (VOCs) in drinking-water sources. The VOC data were compiled from archived chromatograms of samples analyzed originally for chlorofluorocarbons (CFCs) by purge-and-trap gas chromatography with an electron-capture detector (GC-ECD). Concentrations of the VOCs could not be ascertained because standards were not routinely analyzed for VOCs other than trichloromonofluoromethane (CFC-11), dichlorodifluoromethane (CFC-12) and 1,1,2-trichloro-1,2,2-trifluoroethane (CFC-113). Nevertheless, the peak areas associated with the elution times of other VOCs on the chromatograms can be classified qualitatively to assess concentrations at a detection limit on the order of parts per quadrillion. Three or more VOCs were detected in 100% (percent) of the chromatograms, and 77.2% of the samples contained 10 or more VOCs. The maximum number of VOCs detected in any sample was 24. Modeled ground-water residence times, determined from concentrations of CFC-12, were used to assess historical trends in the cumulative occurrence of all VOCs detected in this analysis, as well as the occurrence of individual VOCs, such as CFC-11, carbon tetrachloride (CCl(4)), chloroform and tetrachloroethene (PCE). The detection frequency for all of the VOCs detected has remained relatively constant from approximately 1940 to 2000; however, the magnitude of the peak areas on the chromatograms for the VOCs in the water samples has increased from 1940 to 2000. For CFC-11, CCl(4), chloroform and PCE, small peaks decrease from 1940 to 2000, and large peaks increase from 1940 to 2000. The increase in peak areas on the chromatograms from analyses of more recently recharged water is consistent with reported increases in atmospheric concentrations of the VOCs. Approximately 44% and 6.7% of the CCl(4) and PCE detections, respectively, in pre-1940 water, and 68% and 62% of the CCl(4) and PCE detections, respectively, in water recharged in 2000 exceed solubility equilibrium with average atmospheric concentrations. These exceedences can be attributed to local atmospheric enrichment or direct contaminant input to ground-water flow systems. The detection of VOCs at concentrations indicative of atmospheric sources in 100% of the samples indicates that untreated drinking water from ground-water sources in the US recharged within the past 60 years has been affected by anthropogenic activity. Additional inputs from a variety of sources such as spills, underground injections and leaking landfills or storage tanks increasingly are providing additional sources of contamination to ground water used as drinking-water sources.


Assuntos
Monitoramento Ambiental/estatística & dados numéricos , Água Doce/química , Halogênios/química , Compostos Orgânicos/química , Poluentes Químicos da Água/análise , Abastecimento de Água/estatística & dados numéricos , Atmosfera/análise , Clorofluorcarbonetos/análise , Cromatografia Gasosa , Estudos Longitudinais , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...