Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38139642

RESUMO

As the focus tilts toward online detection methodologies for transformer oil aging, bypassing challenges associated with traditional offline methods, such as sample contamination and misinterpretation, fiber optic sensors are gaining traction due to their compact nature, cost-effectiveness, and resilience to electromagnetic disturbances that are typical in high-voltage environments. This study delves into the sensitivity analysis of intensity-modulated plastic optical fiber sensors. The investigation encompasses key determinants such as the influence of optical source wavelengths, noise response dynamics, ramifications of varying sensing lengths, and repeatability assessments. Our findings highlight that elongating sensing length detrimentally affects both linearity response and repeatability, largely attributed to a diminished resistance to noise. Additionally, the choice of the optical source wavelength proved to be a critical variable in assessing sensor sensitivity.

2.
Sensors (Basel) ; 23(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37631558

RESUMO

The detection of On-Load Tap-Changer (OLTC) faults at an early stage plays a significant role in the maintenance of power transformers, which is the most strategic component of the power network substations. Among the OLTC fault detection methods, vibro-acoustic signal analysis is known as a performant approach with the ability to detect many faults of different types. Extracting the characteristic features from the measured vibro-acoustic signal envelopes is a promising approach to precisely diagnose OLTC faults. The present research work is focused on developing a methodology to detect, locate, and track changes in on-line monitored vibro-acoustic signal envelopes based on the main peaks extraction and Euclidean distance analysis. OLTC monitoring systems have been installed on power transformers in services which allowed the recording of a rich dataset of vibro-acoustic signal envelopes in real time. The proposed approach was applied on six different datasets and a detailed analysis is reported. The results demonstrate the capability of the proposed approach in recognizing, following, and localizing the faults that cause changes in the vibro-acoustic signal envelopes over time.

3.
Sensors (Basel) ; 23(4)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36850909

RESUMO

Despite major progress in the design of power transformers, the Achilles' heel remains the insulation system, which is affected by various parameters including moisture, heat, and vibrations. These important machines require extreme reliability to guarantee electricity distribution to end users. In this contribution, a fiber optic sensor (FOS), consisting of a Fabry-Perot cavity made up of two identical fiber Bragg gratings (FBGs), is proposed, to monitor the temperature and vibration of power transformer windings. A phase shifted gratings recoated sensor, with multilayers of polyimide films, is used to monitor the moisture content in oil. The feasibility is investigated using an experimental laboratory transformer model, especially fabricated for this application. The moisture contents are well correlated with those measured by a Karl Fisher titrator, while the values of temperature compare well with those recorded from thermocouples. It is also shown that the sensors can be used to concurrently detect vibration, as assessed by sensitivity to the loading current. The possibility of dynamically measuring humidity, vibrations, and temperatures right next to the winding, appears to be a new insight that was previously unavailable. This approach, with its triple ability, can help to reduce the required number of sensors and therefore simplify the wiring layout.

4.
Sensors (Basel) ; 22(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36298273

RESUMO

Transformers play an essential role in power networks, ensuring that generated power gets to consumers at the safest voltage level. However, they are prone to insulation failure from ageing, which has fatal and economic consequences if left undetected or unattended. Traditional detection methods are based on scheduled maintenance practices that often involve taking samples from in situ transformers and analysing them in laboratories using several techniques. This conventional method exposes the engineer performing the test to hazards, requires specialised training, and does not guarantee reliable results because samples can be contaminated during collection and transportation. This paper reviews the transformer oil types and some traditional ageing detection methods, including breakdown voltage (BDV), spectroscopy, dissolved gas analysis, total acid number, interfacial tension, and corresponding regulating standards. In addition, a review of sensors, technologies to improve the reliability of online ageing detection, and related online transformer ageing systems is covered in this work. A non-destructive online ageing detection method for in situ transformer oil is a better alternative to the traditional offline detection method. Moreover, when combined with the Internet of Things (IoT) and artificial intelligence, a prescriptive maintenance solution emerges, offering more advantages and robustness than offline preventive maintenance approaches.


Assuntos
Inteligência Artificial , Fontes de Energia Elétrica , Reprodutibilidade dos Testes , Manutenção
5.
Heliyon ; 6(3): e03643, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32258486

RESUMO

This paper summarizes experimental findings of the regenerative capability of nitrogen on Fuller's earth. Regenerating new oil from aged oil involves several cycles requiring a large volume of Fuller's earth. The use of large amounts of Fuller's earth is not economically profitable for companies that carry out regenerative operations to service transformer oils and can have environmental implications, since Fuller's earth is usually used to reclaim transformer oil in a one-time batch basis then disposed of. To improve the situation, a new technique to reduce the number of regeneration cycles is proposed. It is shown that Fuller's earth can be improved by purging it with continuous flowing of a fluid, preferably dry nitrogen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...