Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 44(24): 9470-5, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21105728

RESUMO

Uniform coats of kaolinite particles on a flat glass substrate were prepared to be sufficiently smooth and thin to allow reliable measurement of contact angles of captive crude oil drops in a range of salt solutions, without any particle removal. The contact angle hysteresis was used to infer the extent of oil adhesion via rupture of the intervening water film and anchoring of charged groups to kaolinite. For sodium chloride solutions, adhesion decreases monotonically with pH and/or salinity, with strong adhesion only manifested under acidic conditions with salinity at most 0.1 M. Calcium chloride solutions at pH around 6 switch from strong adhesion in the range 0.001-0.01 M to weak adhesion at higher concentrations. For all mixtures of sodium and calcium chlorides investigated, a total ionic strength above 0.1 M guarantees a weak adhesion of oil to kaolinite. Results are qualitatively consistent with theoretical expectations of electrostatic interactions, with H(+) and Ca(2+) being potential-determining ions for both interfaces.


Assuntos
Recuperação e Remediação Ambiental/métodos , Caulim/química , Petróleo/análise , Poluentes Químicos da Água/química , Água Doce/química , Concentração de Íons de Hidrogênio , Concentração Osmolar , Cloreto de Sódio/química , Propriedades de Superfície , Poluentes Químicos da Água/análise
2.
Langmuir ; 26(6): 4036-47, 2010 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-19916532

RESUMO

The microscopic wettability state of porous media, based on glass bead packings, after crude oil drainage of brine was investigated using X-ray micro-CT, white-light profilometry, and electron microscopy. Tomography revealed that the bulk residual brine occupied around 10% of void space, located in smaller pores and as pendular rings around bead contacts, in agreement with numerical simulations of drainage. The bead packing contained planar slabs of mica, quartz, and oxidized silicon wafer, which after flushing and disassembly of the pack allowed analysis of their wettability alteration due to deposition of asphaltenes from the crude oil. These substrates exhibited an overall pattern of rings with clean interiors, matching the brine pendular ring size inferred from experimental and simulated drainage, and asphaltene deposition in their exteriors, verifying the mixed wet model of oil reservoir wettability. The extent of asphaltene intrusion into ring interiors and completeness of asphaltene coverage of exteriors both increased with overall deposition tendency for the brine composition. The observed dependence on NaCl concentration and pH was consistent with expectations from DLVO and non-DLVO interactions governing brine thin film rupture and subsequent asphaltene deposition.

3.
Langmuir ; 24(18): 10443-52, 2008 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-18710272

RESUMO

High surface area, high porosity, nanometric polygonal silica foams with hierarchically connected and uniformly sized pore systems are reported here. We observe a remarkable increase in foam cell sizes from mesoscopic to macroscopic dimensions upon swelling the self-assembled template with oil. The resultant structures resemble classical macroscopic soap foams and display, among other features, Plateau borders and volume fractions approaching the dry limit of 100%. In well-developed foams of this kind, dimensionally isometric polyhedral cells are connected by relatively short, flat cylindrical mesopores through polyhedral faces and micropores through the walls. For one sample, with approximately 75 nm diameter primary foam cells, we infer three separate sets of cell-connecting mesopores puncturing tetragonal, pentagonal, and hexagonal faces of the component polyhedra. A multiple step model of foam formation is discussed where an organic silica precursor progressively hydrolyzes and condenses as a growing flexible shell from the core-corona interface of oil-swollen triblock copolymer micelles or microemulsion droplets, inducing a clouding phenomena in the otherwise stabilizing poly(ethylene oxide) chains, leading to aggregation, deformation, and jamming to high volume fractions.

4.
Langmuir ; 22(26): 10951-7, 2006 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-17154570

RESUMO

The binary system of hexaethylene glycol n-hexadecyl ether (C16EO6) and water (2H2O) has a complex, temperature-dependent lyotropic phase sequence, in the concentration region of 48-62 wt %. On cooling it shows the sequence lamellar phase, L(alpha), random mesh phase Mh1(0), rhombohedral mesh phase, Mh1(R(-)3m), bicontinuous cubic phase, V1(Ia(-)3d), and a two-phase hexagonal region, H1+Lbeta. On heating from the latter two-phase region the phase sequence is V1(Ia(-)3d), ,Mh1(0), and Lalpha. Polarizing optical microscopy, 2H nuclear magnetic resonance, and small-angle X-ray scattering have been used to study the stability of these phases, their sequence, and their physical parameters with the addition of the oils, 1-hexene, decane, and octadecane. The oils are located within the alkyl chain regions of the mesophase structures. Depending on whether the added oil is "penetrating" or "swelling", it may reside in the region between the C16 alkyl chains of the surfactant or at the center of the bilayer and affect phase stability. Oils affect both the volume of the alkyl chain region (at fixed surfactant water mole ratio) and the rigidity of the interfacial region. Both effects can influence the phase structures and their ranges of stability. Adding different types of oil to the mesh phases gives an opportunity to understand the factors that are important in their formation. The transition from the Mh1(R(-)3m) phase to Mh1(0) phase is triggered by the hydrocarbon region swelling to a critical volume fraction of 0.32, a surfactant rod radius of approximately 1.75 nm, and a critical water layer thickness of approximately 2.5 nm. The latter is most likely responsible for a weakening of the interlayer headgroup overlap interaction and the loss of correlation between the layers. The lamellar phase becomes the only stable phase at high oil content.

5.
J Colloid Interface Sci ; 287(1): 249-60, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15914173

RESUMO

This study develops and tests an experimental method to monitor in situ the dynamic spreading of individual toner particles on model substrates during heating, to simulate on laboratory scale the fusing sub-processes occurring in electrophotographic printing of paper. Real toner particles of cyan, magenta, yellow and black are transformed to perfect spheres by a temperature pre-treatment, then applied to the substrate, either high-energy clean glass or low-energy hydrophobised glass, and heated at rates up to 50 degrees C/min. The subsequent spreading as a function of time (and temperature) is recorded by an optical microscope and CCD camera mounted above the substrate, with the measured drop covering area used to calculate the corresponding toner-substrate-air contact angle. On the hydrophobic substrate the spreading is limited and equal for all four colours, while the substantially greater spreading on the hydrophilic substrate is accompanied by significant differences between the toner colours. In particular, the cyan and black toners are found to spread to almost twice the extent of the yellow particles. The dynamic spreading behaviour is interpreted in terms of complementary measurements of substrate and toner surface energy components and bulk toner rheology, and a simple empirical relation is proposed that fits very well the measurements for all toner and substrate types tested. In particular, the spreading relation is found to be determined only by the toner surface energy and its equilibrium contact angle, with no explicit dependence on toner viscosity.

6.
Biomacromolecules ; 5(3): 1097-101, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15132704

RESUMO

The porosity and the available surface area of a lignocellulosic fiber can influence the accessibility and reactivity in derivatization and modification reactions because the porous cell-wall network determines the upper size limit for molecules that can penetrate and react with the interior of the wall. To obtain information concerning the accessibility of the porous cell wall of wood fibers, surfactant-templated sol-gel mineralization has been examined. Wood and kraft pulp samples of Norway spruce were impregnated with a silica sol-gel and subsequently heated (calcined) and transformed into structured mesoporous silica. Microscopy studies (environmental scanning electron microscopy, transmission electron microsopy, TEM) on the silica casts showed that the three-dimensional architecture of the wood and pulp fiber cell wall was revealed down to the nanometer level. Image analysis of TEM micrographs of silica fragments from the never-dried pulp revealed complete infiltration of the cell-wall voids and microcavities (mean pore width 4.7 +/- 2 nm) by the sol-gel and the presence of cellulose fibrils with a width of 3.6 +/- 1 nm. Cellulose fibrils of the same width as that shown by image analysis were also identified by nitrogen adsorption measurements of the pore size distribution in the replicas.


Assuntos
Parede Celular/química , Dióxido de Silício/química , Madeira , Adsorção , Celulose/química , Lignina/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Nitrogênio/química , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...