Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 376(2125)2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-29941627

RESUMO

The conventional Josephson effect may be modified by introducing spin-active scattering in the interface layer of the junction. Here, we discuss a Josephson junction consisting of two s-wave superconducting leads coupled over a classical spin that precesses with the Larmor frequency due to an external magnetic field. This magnetically active interface results in a time-dependent boundary condition with different tunnelling amplitudes for spin-up and -down quasi-particles and where the precession produces spin-flip scattering processes. As a result, the Andreev states develop sidebands and a non-equilibrium population that depend on the details of the spin precession. The Andreev states carry a steady-state Josephson charge current and a time-dependent spin current, whose current-phase relations could be used to characterize the precessing spin. The spin current is supported by spin-triplet correlations induced by the spin precession and creates a feedback effect on the classical spin in the form of a torque that shifts the precession frequency. By applying a bias voltage, the Josephson frequency adds another complexity to the situation and may create resonances together with the Larmor frequency. These Shapiro resonances manifest as torques and, under suitable conditions, are able to reverse the direction of the classical spin in sub-nanosecond time. Another characteristic feature is the subharmonic gap structure in the DC charge current displaying an even-odd effect attributable to precession-assisted multiple Andreev reflections.This article is part of the theme issue 'Andreev bound states'.

2.
Nat Commun ; 9(1): 2190, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29875357

RESUMO

Flat bands of zero-energy states at the edges of quantum materials have a topological origin. However, their presence is energetically unfavorable. If there is a mechanism to shift the band to finite energies, a phase transition can occur. Here we study high-temperature superconductors hosting flat bands of midgap Andreev surface states. In a second-order phase transition at roughly a fifth of the superconducting transition temperature, time-reversal symmetry and continuous translational symmetry along the edge are spontaneously broken. In an external magnetic field, only translational symmetry is broken. We identify the order parameter as the superfluid momentum ps, that forms a planar vector field with defects, including edge sources and sinks. The critical points of the vector field satisfy a generalized Poincaré-Hopf theorem, relating the sum of Poincaré indices to the Euler characteristic of the system.

3.
Phys Rev Lett ; 115(23): 235301, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26684121

RESUMO

We study the spectrum of fermion states localized within the vortex core of a weak-coupling p-wave superfluid. The low energy spectrum consists of two anomalous branches that generate a large density of states at the locations of the half cores of the vortex. Fermi liquid interactions significantly stretch the vortex structure, which leads to a Lifshitz transition in the effective Fermi surface of the vortex core fermions. We apply the results to the rotational dynamics of vortices in superfluid ^{3}He-B and find an explanation for the observed slow mode.

4.
Phys Rev Lett ; 111(13): 137002, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-24116809

RESUMO

We study a superconducting charge qubit coupled to an intensive electromagnetic field and probe changes in the resonance frequency of the formed dressed states. At large driving strengths, exceeding the qubit energy-level splitting, this reveals the well known Landau-Zener-Stückelberg interference structure of a longitudinally driven two-level system. For even stronger drives, we observe a significant change in the Landau-Zener-Stückelberg pattern and contrast. We attribute this to photon-assisted quasiparticle tunneling in the qubit. This results in the recovery of the qubit parity, eliminating effects of quasiparticle poisoning, and leads to an enhanced interferometric response. The interference pattern becomes robust to quasiparticle poisoning and has a good potential for accurate charge sensing.

5.
Nat Nanotechnol ; 8(1): 25-30, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23223187

RESUMO

The symmetry of Cooper pairs is central to constructing a superconducting state. The demonstration of a d(x²-y²)-wave order parameter with nodes represented a breakthrough for high critical temperature superconductors (HTSs). However, despite this fundamental discovery, the origin of superconductivity remains elusive, raising the question of whether something is missing from the global picture. Deviations from d(x²-y²)-wave symmetry, such as an imaginary admixture d(x²-y²)+ is (or id(xy)), predict a ground state with unconventional properties exhibiting a full superconducting gap and time reversal symmetry breaking. The existence of such a state, until now highly controversial, can be proved by highly sensitive measurements of the excitation spectrum. Here, we present a spectroscopic technique based on an HTS nanoscale device that allows an unprecedented energy resolution thanks to Coulomb blockade effects, a regime practically inaccessible in these materials previously. We find that the energy required to add an extra electron depends on the parity (odd/even) of the excess electrons on the island and increases with magnetic field. This is inconsistent with a pure d(x²-y²)-wave symmetry and demonstrates a complex order parameter component that needs to be incorporated into any theoretical model of HTS.

6.
Phys Rev Lett ; 89(22): 227003, 2002 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-12485097

RESUMO

We present a theoretical analysis of the shot noise in d-wave/d-wave contacts with arbitrary transparency, including the contribution of multiple Andreev reflections. The multiple charge quanta transferred in these processes are revealed as a huge enhancement of the noise-current ratio at low voltages, which survives for all crystal misorientations. We also show how different ingredients such as nonmagnetic impurities or a magnetic field produce very characteristic hallmarks in the shot noise, which can be used as a further test of the d-wave scenario in superconducting cuprates.

7.
Phys Rev Lett ; 84(7): 1595-8, 2000 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-11017576

RESUMO

The superconducting gap function of Sr2RuO4 was investigated by means of quasiparticle reflection and transmission at the normal conductor-superconductor interface of Sr2RuO4-Pt point contacts. We found two distinctly different types of dV/dI vs V spectra either with a double-minimum structure or with a zero-bias conductance anomaly. Both types of spectra are expected in the limit of high and low transparency, respectively, of the interface barrier between a normal metal and a spin-triplet superconductor. Together with the temperature dependence of the spectra this result strongly supports a spin-triplet superconducting order parameter for Sr2RuO4.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...