Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Contam Hydrol ; 246: 103964, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35180606

RESUMO

Dry wells (gravity-fed infiltration wells) have frequently been used to recharge aquifers with stormwater, especially in urban areas, as well as manage flood risk and reduce surface water body contamination from stormwater pollutants. However, only limited assessment of their potential adverse impacts on groundwater quality exists. Dry well recharge can bypass significant portions of the filtering-capacity of the vadose zone. Stormwater and groundwater monitoring data and analysis of transport of a wide range of historic and current-use stormwater chemicals of concern is lacking. To address these gaps, two dry wells were constructed with vegetated and structural pretreatment features to assess the likelihood of stormwater contaminants reaching the aquifer. We monitored, assessed, and compared the presence of contaminants in stormwater to water quality in the vadose zone and shallow groundwater after it passed through the dry well. The dry wells were installed at a suburban residential and at a suburban commercial site. The selected sites were overlying a regional, unconsolidated, and highly heterogeneous alluvial aquifer system. Stormwater, vadose zone, and groundwater samples were collected during five storms and analyzed for over 200 contaminants of concern. Relatively few contaminants were detected in stormwater, generally at low concentrations. Prior to stormwater entering the dry well, 50-65% of contaminants were removed by vegetated pretreatment. In groundwater, metals such as aluminum and iron were detected at similar concentrations in both upgradient and downgradient wells, suggesting the source of these metals was not dry well effluent. Naturally occurring metals such as chromium and arsenic were not detected in stormwater but were found at elevated concentrations in groundwater. A modeling assessment suggests that the travel time of metals and hydrophobic organic contaminants to the water table at these sites ranges from years to centuries, whereas water soluble pesticides would likely reach the water table within days to months. The modeling assessment also showed that more vulnerable sites with higher fraction of alluvial sands would have much shorter contaminant travel times. However, none of the contaminants assessed reached concentrations that pose a risk to human health across the scenarios considered. No evidence was found, either through direct measurements or vadose zone modeling, that contaminants present in suburban stormwater degraded or would degrade groundwater quality at the studied sites and site conditions. Future work is needed to address emerging contaminants of concern.


Assuntos
Água Subterrânea , Praguicidas , Poluentes Químicos da Água , Monitoramento Ambiental , Água Subterrânea/química , Humanos , Metais/análise , Praguicidas/análise , Poluentes Químicos da Água/análise , Qualidade da Água , Poços de Água
2.
Environ Sci Technol ; 55(4): 2265-2275, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33507730

RESUMO

Nitrate is one of the most abundant contaminants in groundwater globally, in the United States, and in California (CA). We studied well construction information, water chemistry, stable isotopes, and noble gases to understand how groundwater travel time and recharge source and mechanism control nitrate concentrations in domestic wells in the San Joaquin Valley (SJV), CA, a large semiarid, irrigated agricultural region. Using nonparametric statistics, we find a decreasing trend in nitrates with groundwater travel time and well depth. Samples collected from wells that are closer to rivers and that show indications of river water recharge, either low recharge temperature or low δ18O signature, have lower concentrations of nitrates than samples with isotopic signatures indicating mixed source or local precipitation recharge. The curbing effect of river water recharge on nitrate concentrations in domestic wells is similar for direct river recharge and water applied as irrigation. This suggests that irrigation with river water also has a diluting effect that reduces the concentration of nitrate found in groundwater. This conclusion supports the idea that flood-managed aquifer recharge may be considered for remediation of groundwater nitrate when designing replenishment of aquifers.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental , Nitratos/análise , Poluentes Químicos da Água/análise , Poços de Água
3.
Mar Pollut Bull ; 149: 110496, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31425848

RESUMO

Heavy metal elements, including Zn, Cd, As, Ni, Cu, Pb and Cr, were detected in soils (no deeper than 75 m) from newly reclaimed zones of Shanghai, China. The Zn concentration exceeded soil quality limits. The Zn contamination was tested in both dredger fills and sedimentary layers (①3-3, ②3, ④ and ⑤1-1). However, it was not detected in layer ⑤1-2-⑨. PCA and HCA analysis show that exogenous Zn probably was the contaminant source of dredger fills before the fills were dredged from the neighboring waters. Stochastic heterogeneity of the dredger fills affects the Zn-depollution remarkably. Numerical simulations show both acid precipitation and widespread drainage channels in the zones contributed to Zn-decrease in the dredger fills no deeper than 1.2 m. Acid rainstorms work better than acid constant precipitation in Zn-remediation for layers below 0.4 m. To remove Zn contamination in deep dredger fills, un-consolidation of the fills should be utilized.


Assuntos
Poluentes do Solo , Zinco , China , Monitoramento Ambiental , Metais Pesados/análise , Medição de Risco , Solo , Poluentes do Solo/análise , Zinco/análise
4.
Hydrogeol J ; 27(4): 1363-1371, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31933539

RESUMO

A case study is presented that implements two numerical models for simulating a 30-year PAT operation conducted at a large contaminated site for which high-resolution data sets are available. A Markov chain based stochastic method is used to conditionally generate the realizations with random distribution of heterogeneity for the Tucson International Airport Area (TIAA) federal Superfund site. The fields were conditioned to data collected for 245 boreholes drilled at the site. Both MT3DMS and the advanced random walk particle method (RWhet) were used to simulate the PAT-based mass removal process. The results show that both MT3DMS and RWhet represent the measured data reasonably, with Root Mean Square Error (RMSE) less than 0.03. The use of fine grids and the total-variation-diminishing method (TVD) limited the effects of numerical dispersion for MT3DMS. However, the effects of numerical dispersion were observed when compared to the simulations produced with RWhet using a larger number of particles, which provided more accurate results with RMSE diminishing from 0.027 to 0.024 to 0.020 for simulations with 1, 20, and 50 particles. The computational time increased with more particles used in the model, but was still much less than the time required for MT3DMS, which is an advantage of RWhet. By showing the results using both methods, this study provides guidance for simulating long-term PAT systems. This work will lead to improve understanding of contaminant transport and plume persistence, and in turn will enhance site characterization and site management for contaminated sites with large plumes.

5.
J Hazard Mater ; 365: 796-803, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30476803

RESUMO

The purpose of this study is to evaluate the impact of heterogeneity on the long-term performance of a large pump-and-treat (PAT) system that has been in operation for 30 years at a site located in Tucson, AZ. A 3D numerical model was developed. Three different concentrations were examined: composite concentration in the influent to the treatment plant, resident concentration in the aquifer, and concentration for downgradient boundary discharge. The time scales needed for concentrations measured in these ways to reach the Maximum Contaminant Levels (MCLs) are significantly different, with ∼125 years required for treatment-plant influent compared to ∼225 years for downgradient boundary discharge and >>227 years (total simulated time) for the resident concentration in the aquifer. These large time scales, compared to 36 years for a hypothetical homogeneous system, demonstrate the significant impacts of permeability heterogeneity on remediation at this site. The possibility of closure of the site was investigated by examining the mass discharge from the site boundary and the concentration rebound after simulating shutdown of the PAT system. The results of this study provide insight on evaluation of closure potential for large, complex contamination sites and a reference on selecting performance metrics for site management.

6.
Artigo em Inglês | MEDLINE | ID: mdl-29874842

RESUMO

Groundwater susceptibility to non-point source contamination is typically quantified by stable indexes, while groundwater quality evolution (or deterioration globally) can be a long-term process that may last for decades and exhibit strong temporal variations. This study proposes a three-dimensional (3-d), transient index map built upon physical models to characterize the complete temporal evolution of deep aquifer susceptibility. For illustration purposes, the previous travel time probability density (BTTPD) approach is extended to assess the 3-d deep groundwater susceptibility to non-point source contamination within a sequence stratigraphic framework observed in the Kings River fluvial fan (KRFF) aquifer. The BTTPD, which represents complete age distributions underlying a single groundwater sample in a regional-scale aquifer, is used as a quantitative, transient measure of aquifer susceptibility. The resultant 3-d imaging of susceptibility using the simulated BTTPDs in KRFF reveals the strong influence of regional-scale heterogeneity on susceptibility. The regional-scale incised-valley fill deposits increase the susceptibility of aquifers by enhancing rapid downward solute movement and displaying relatively narrow and young age distributions. In contrast, the regional-scale sequence-boundary paleosols within the open-fan deposits "protect" deep aquifers by slowing downward solute movement and displaying a relatively broad and old age distribution. Further comparison of the simulated susceptibility index maps to known contaminant distributions shows that these maps are generally consistent with the high concentration and quick evolution of 1,2-dibromo-3-chloropropane (DBCP) in groundwater around the incised-valley fill since the 1970s'. This application demonstrates that the BTTPDs can be used as quantitative and transient measures of deep aquifer susceptibility to non-point source contamination.


Assuntos
Monitoramento Ambiental/métodos , Água Subterrânea/química , Poluentes Químicos da Água/análise , Modelos Teóricos , Movimentos da Água
7.
J Contam Hydrol ; 149: 46-60, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23584457

RESUMO

This work considers how the inferred mixing state of diffusive and advective-diffusive systems will vary over time when the solute masses are not constant over time. We develop a number of tools that allow the scalar dissipation rate to be used as a mixing measure in these systems without calculating local concentration gradients. The behavior of dissipation rates is investigated for single and multi-component kinetic reactions and a commonly studied equilibrium reaction. The scalar dissipation rate of a tracer experiencing first-order decay can be determined exactly from the decay constant and the dissipation rate of a passive tracer, and the mixing rate of a conservative component is not the superposition of the solute specific mixing rates. We then show how the behavior of the scalar dissipation rate can be determined from a limited subset of an infinite domain. Corrections are derived for constant and time dependent limits of integration the latter is used to approximate dissipation rates in advective-diffusive systems. Several of the corrections exhibit similarities to the previous work on mixing, including non-Fickian mixing. This illustrates the importance of accounting for the effects that reaction systems or limited monitoring areas may have on the inferred mixing state.


Assuntos
Água Subterrânea/análise , Monitoramento Ambiental/métodos , Cinética
8.
Adv Water Resour ; 54: 11-21, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25821342

RESUMO

Groundwater age distributions are used to estimate the parameters of Fickian, and non-Fickian, effective models of solute transport. Based on the similarities between the transport and age equations, we develop a deconvolution based approach that describes transport between two monitoring wells. We show that the proposed method gives exact estimates of the travel time distribution between two wells when the domain is stationary and that the method still provides useful information on transport when the domain is non-stationary. The method is demonstrated using idealized uniform and layered 2-D aquifers. Homogeneous transport is determined exactly and non-Fickian transport in a layered aquifer was also approximated very well, even though this example problem is shown to be scale-dependent. This work introduces a method that addresses a significant limitation of tracer tests and non-Fickian transport modeling which is the difficulty in determining the effective parameters of the transport model.

9.
Water Resour Res ; 48(7): W07508, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24976651

RESUMO

We expand the governing equation of groundwater age to account for non-Fickian dispersive fluxes using continuous random walks. Groundwater age is included as an additional (fifth) dimension on which the volumetric mass density of water is distributed and we follow the classical random walk derivation now in five dimensions. The general solution of the random walk recovers the previous conventional model of age when the low order moments of the transition density functions remain finite at their limits and describes non-Fickian age distributions when the transition densities diverge. Previously published transition densities are then used to show how the added dimension in age affects the governing differential equations. Depending on which transition densities diverge, the resulting models may be nonlocal in time, space, or age and can describe asymptotic or pre-asymptotic dispersion. A joint distribution function of time and age transitions is developed as a conditional probability and a natural result of this is that time and age must always have identical transition rate functions. This implies that a transition density defined for age can substitute for a density in time and this has implications for transport model parameter estimation. We present examples of simulated age distributions from a geologically based, heterogeneous domain that exhibit non-Fickian behavior and show that the non-Fickian model provides better descriptions of the distributions than the Fickian model.

10.
J Contam Hydrol ; 126(3-4): 235-47, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22115089

RESUMO

A methyl tert-butyl ether (MTBE) / tert-butyl alcohol (TBA) plume originating from a gasoline spill in late 1994 at Vandenberg Air Force Base (VAFB) persisted for over 15 years within 200 feet of the original spill source. The plume persisted until 2010 despite excavation of the tanks and piping within months after the spill and excavations of additional contaminated sediments from the source area in 2007 and 2008. The probable history of MTBE concentrations along the plume centerline at its source was estimated using a wide variety of available information, including published details about the original spill, excavations and monitoring by VAFB consultants, and our own research data. Two-dimensional reactive transport simulations of MTBE along the plume centerline were conducted for a 20-year period following the spill. These analyses suggest that MTBE diffused from the thin anaerobic aquifer into the adjacent anaerobic silts and transformed to TBA in both aquifer and silt layers. The model reproduces the observation that after 2004 TBA was the dominant solute, diffusing back out of the silts into the aquifer and sustaining plume concentrations much longer than would have been the case in the absence of such diffusive exchange. Simulations also suggest that aerobic degradation of MTBE or TBA at the water table in the overlying silt layer significantly affected concentrations of MTBE and TBA by limiting the chemical mass available for back diffusion to the aquifer.


Assuntos
Éteres Metílicos/química , Poluentes Químicos da Água/química , terc-Butil Álcool/química , Biodegradação Ambiental , Biotransformação , California , Monitoramento Ambiental , Água Subterrânea/química , Cinética , Éteres Metílicos/análise , Éteres Metílicos/metabolismo , Poluição por Petróleo , Movimentos da Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , terc-Butil Álcool/análise , terc-Butil Álcool/metabolismo
11.
Environ Sci Technol ; 41(19): 6822-7, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17969701

RESUMO

Tertiary butyl alcohol (TBA) is commonly found as an impurity in methyl tertiary butyl ether (MTBE) added to gasoline. Frequent observations of high TBA, and especially rising TBA/MTBE concentration ratios, in groundwater at gasoline spill sites are generally attributed to microbial conversion of MTBE to TBA. Typically overlooked is the role of volatilization in the attenuation of these chemicals especially in the vadose zone, which is a source of contamination to groundwater. Here we show that volatilization, particularly through remediation by vapor extraction, can substantially affect the trends in TBA and MTBE concentrations and the respective mass available to impact groundwater aquifers, through the preferential removal of more volatile compounds, including MTBE, and the apparent enrichment of less volatile compounds like TBA. We demonstrate this phenomenon through numerical simulations of remedial-enhanced volatilization. Results show increases in TBA/MTBE concentration ratios consistent with ratios observed in groundwater at gasoline spill sites. Volatilization is an important, and potentially dominant, process that can result in concentration trends similar to those typically attributed to biodegradation.


Assuntos
Éteres Metílicos/química , Poluentes do Solo/química , terc-Butil Álcool/química , Gasolina , Volatilização
12.
Ground Water ; 44(6): 837-52, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17087756

RESUMO

Low river flows are commonly controlled by river-aquifer exchange, the magnitude of which is governed by hydraulic properties of both aquifer and aquitard materials beneath the river. Low flows are often important ecologically. Numerical simulations were used to assess how textural heterogeneity of an alluvial system influences river seepage and low flows. The Cosumnes River in California was used as a test case. Declining fall flows in the Cosumnes River have threatened Chinook salmon runs. A ground water-surface water model for the lower river basin was developed, which incorporates detailed geostatistical simulations of aquifer heterogeneity. Six different realizations of heterogeneity and a homogenous model were run for a 3-year period. Net annual seepage from the river was found to be similar among the models. However, spatial distribution of seepage along the channel, water table configuration and the level of local connection, and disconnection between the river and aquifer showed strong variations among the different heterogeneous models. Most importantly, the heterogeneous models suggest that river seepage losses can be reduced by local reconnections, even when the regional water table remains well below the riverbed. The percentage of river channel responsible for 50% of total river seepage ranged from 10% to 26% in the heterogeneous models as opposed to 23% in the homogeneous model. Differences in seepage between the models resulted in up to 13 d difference in the number of days the river was open for salmon migration during the critical fall months in one given year.


Assuntos
Sedimentos Geológicos , Rios , Movimentos da Água , Calibragem , California , Simulação por Computador , Ecossistema , Entropia
13.
Ground Water ; 41(2): 238-46, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12656290

RESUMO

Development of the finite-element-based Integrated Groundwater and Surface-Water Model (IGSM) began in the 1970s. Its popularity grew in the early 1990s with its application to California's Central Valley Groundwater Surface-Water Model in support of the Central Valley Project Improvement Act. Since that time, IGSM has been applied by federal, state, and local agencies to model a number of major basins in California. Our review of the recently released version 5.0 of IGSM reveals a solution methodology that deviates from established solution techniques, potentially compromising its reliability under many circumstances. One difficulty occurs because of the semi-explicit time discretization used. Combined with the fixed monthly time step of IGSM, this approach can prevent applications from accurately converging when using parameter values typically found in nature. Additionally, IGSM fails to properly couple and simultaneously solve ground water and surface water models with appropriate mass balance and head convergence under the reasonable conditions considered herein. As a result, IGSM-predicted streamflow is error prone, and errors could exceed 100%. IGSM does not inform the user that there may be a convergence problem with the solution, but instead generally reports good mass balance. Although our review touches on only a few aspects of the code, which exceeds 17,000 lines, our experience is that similar problems arise in other parts of IGSM. Review and examples demonstrate the potential consequences of using the solution methods in IGSM for the prediction, planning, and management of water resources, and provide perspective on the roles of standards and code validation in ground water modeling.


Assuntos
Modelos Teóricos , Solo , Movimentos da Água , Abastecimento de Água , Previsões
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...