Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(5): 2016-2022, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36847481

RESUMO

We image and characterize the mechanical modes of a 2D drum resonator made of hBN suspended over a high-stress Si3N4 membrane. Our measurements demonstrate hybridization between various modes of the hBN resonator and those of the Si3N4 membrane. The measured resonance frequencies and spatial profiles of the modes are consistent with finite-element simulations based on idealized geometry. Spectra of the thermal motion reveal that, depending on the degree of hybridization with modes of the heavier and higher-quality-factor Si3N4 membrane, the quality factors and the motional mass of the hBN drum modes can be shifted by orders of magnitude. This effect could be exploited to engineer hybrid drum/membrane modes that combine the low motional mass of 2D materials with the high quality factor of Si3N4 membranes for optomechanical or sensing applications.

2.
Rev Sci Instrum ; 93(9): 095003, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36182449

RESUMO

We describe an apparatus for the implementation of hybrid optomechanical systems at 4 K. The platform is based on a high-finesse, micrometer-scale fiber Fabry-Perot cavity, which can be widely tuned using piezoelectric positioners. A mechanical resonator can be positioned within the cavity in the object-in-the-middle configuration by a second set of positioners. A high level of stability is achieved without sacrificing either performance or tunability, through the combination of a stiff mechanical design, passive vibration isolation, and an active Pound-Drever-Hall feedback lock incorporating a reconfigurable digital filter. The stability of the cavity length is demonstrated to be better than a few picometers over many hours both at room temperature and at 4 K.

3.
Nat Commun ; 12(1): 4124, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34226553

RESUMO

Cooling down nanomechanical force probes is a generic strategy to enhance their sensitivities through the concomitant reduction of their thermal noise and mechanical damping rates. However, heat conduction becomes less efficient at low temperatures, which renders difficult to ensure and verify their proper thermalization. Here we implement optomechanical readout techniques operating in the photon counting regime to probe the dynamics of suspended silicon carbide nanowires in a dilution refrigerator. Readout of their vibrations is realized with sub-picowatt optical powers, in a situation where less than one photon is collected per oscillation period. We demonstrate their thermalization down to 32 ± 2 mK, reaching very large sensitivities for scanning probe force sensors, 40 zN Hz-1/2, with a sensitivity to lateral force field gradients in the fN m-1 range. This opens the road toward explorations of the mechanical and thermal conduction properties of nanoresonators at minimal excitation level, and to nanomechanical vectorial imaging of faint forces at dilution temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...