Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(48): eadj2801, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38039360

RESUMO

The analysis of proteins in the gas phase benefits from detectors that exhibit high efficiency and precise spatial resolution. Although modern secondary electron multipliers already address numerous analytical requirements, additional methods are desired for macromolecules at energies lower than currently used in post-acceleration detection. Previous studies have proven the sensitivity of superconducting detectors to high-energy particles in time-of-flight mass spectrometry. Here, we demonstrate that superconducting nanowire detectors are exceptionally well suited for quadrupole mass spectrometry and exhibit an outstanding quantum yield at low-impact energies. At energies as low as 100 eV, the sensitivity of these detectors surpasses conventional ion detectors by three orders of magnitude, and they offer the possibility to discriminate molecules by their impact energy and charge. We demonstrate three developments with these compact and sensitive devices, the recording of 2D ion beam profiles, photochemistry experiments in the gas phase, and advanced cryogenic electronics to pave the way toward highly integrated detectors.

2.
Rev Sci Instrum ; 94(3): 033703, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37012738

RESUMO

This report highlights the combination of the MicroTime 100 upright confocal fluorescence lifetime microscope with a Single Quantum Eos Superconducting Nanowire Single-Photon Detector (SNSPD) system as a powerful tool for photophysical research and applications. We focus on an application in materials science, photoluminescence imaging, and lifetime characterization of Cu(InGa)Se2 (CIGS) devices intended for solar cells. We demonstrate improved sensitivity, signal-to-noise ratio, and time-resolution in combination with confocal spatial resolution in the near-infrared (NIR) range, specifically in the 1000-1300 nm range. The MicroTime 100-Single Quantum Eos system shows two orders of magnitude higher signal-to-noise ratio for CIGS devices' photoluminescence imaging compared to a standard NIR-photomultiplier tube (NIR-PMT) and a three-fold improvement in time resolution, which is now limited by the laser pulse width. Our results demonstrate the advantages in terms of image quality and time resolution of SNSPDs technology for imaging in materials science.

3.
Opt Express ; 31(1): 610-625, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36606996

RESUMO

Superconducting nanowire single-photon detectors (SNSPDs) show near unity efficiency, low dark count rate, and short recovery time. Combining these characteristics with temporal control of SNSPDs broadens their applications as in active de-latching for higher dynamic range counting or temporal filtering for pump-probe spectroscopy or LiDAR. To that end, we demonstrate active gating of an SNSPD with a minimum off-to-on rise time of 2.4 ns and a total gate length of 5.0 ns. We show how the rise time depends on the inductance of the detector in combination with the control electronics. The gate window is demonstrated to be fully and freely, electrically tunable up to 500 ns at a repetition rate of 1.0 MHz, as well as ungated, free-running operation. Control electronics to generate the gating are mounted on the 2.3 K stage of a closed-cycle sorption cryostat, while the detector is operated on the cold stage at 0.8 K. We show that the efficiency and timing jitter of the detector is not altered during the on-time of the gating window. We exploit gated operation to demonstrate a method to increase in the photon counting dynamic range by a factor 11.2, as well as temporal filtering of a strong pump in an emulated pump-probe experiment.

4.
Nat Nanotechnol ; 17(6): 653-660, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35606441

RESUMO

Light scattering by biological tissues sets a limit to the penetration depth of high-resolution optical microscopy imaging of live mammals in vivo. An effective approach to reduce light scattering and increase imaging depth is to extend the excitation and emission wavelengths to the second near-infrared window (NIR-II) at >1,000 nm, also called the short-wavelength infrared window. Here we show biocompatible core-shell lead sulfide/cadmium sulfide quantum dots emitting at ~1,880 nm and superconducting nanowire single-photon detectors for single-photon detection up to 2,000 nm, enabling a one-photon excitation fluorescence imaging window in the 1,700-2,000 nm (NIR-IIc) range with 1,650 nm excitation-the longest one-photon excitation and emission for in vivo mouse imaging so far. Confocal fluorescence imaging in NIR-IIc reached an imaging depth of ~1,100 µm through an intact mouse head, and enabled non-invasive cellular-resolution imaging in the inguinal lymph nodes of mice without any surgery. We achieve in vivo molecular imaging of high endothelial venules with diameters as small as ~6.6 µm, as well as CD169 + macrophages and CD3 + T cells in the lymph nodes, opening the possibility of non-invasive intravital imaging of immune trafficking in lymph nodes at the single-cell/vessel-level longitudinally.


Assuntos
Nanofios , Pontos Quânticos , Animais , Mamíferos , Camundongos , Microscopia de Fluorescência/métodos , Imagem Óptica/métodos , Fótons , Pontos Quânticos/química
5.
Appl Opt ; 58(36): 9803-9807, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31873623

RESUMO

In the past decade, superconducting nanowire single-photon detectors (SNSPDs) have gradually become an indispensable part of any demanding quantum optics experiment. Until now, most SNSPDs have been coupled to single-mode fibers. SNSPDs coupled to multimode fibers have shown promising efficiencies but have yet to achieve high time resolution. For a number of applications ranging from quantum nano-photonics to bio-optics, high efficiency and high time resolution are desired at the same time. In this paper, we demonstrate the role of polarization on the efficiency of multimode-fiber-coupled detectors and fabricated high-performance 20 µm, 25 µm, and 50 µm diameter detectors targeted for visible, near-infrared, and telecom wavelengths. A custom-built setup was used to simulate realistic experiments with randomized modes in the fiber. We achieved over 80% system efficiency and $ {\lt} {20}\;{\rm ps}$<20ps timing jitter for 20 µm SNSPDs. Also, we realized 70% system efficiency and $ {\lt} {20}\;{\rm ps}$<20ps timing jitter for 50 µm SNSPDs. The high-efficiency multimode-fiber-coupled SNSPDs with unparalleled time resolution will benefit various quantum optics experiments and applications in the future.

6.
Struct Dyn ; 5(4): 044502, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30175157

RESUMO

The laser-driven ultrafast demagnetization effect is one of the long-standing problems in solid-state physics. The time scale is given not only by the transfer of energy, but also by the transport of angular momentum away from the spin system. Through a double-pulse experiment resembling two-dimensional spectroscopy, we separate the different pathways by their nonlinear properties. We find (a) that the loss of magnetization within 400 fs is not affected by the previous excitations (linear process), and (b) we observe a picosecond demagnetization contribution that is strongly affected by the previous excitations. Our experimental approach is useful not only for studying femtosecond spin dynamics, but can also be adapted to other problems in solid-state dynamics.

7.
Nat Commun ; 8(1): 379, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28855499

RESUMO

Quantum light plays a pivotal role in modern science and future photonic applications. Since the advent of integrated quantum nanophotonics different material platforms based on III-V nanostructures-, colour centers-, and nonlinear waveguides as on-chip light sources have been investigated. Each platform has unique advantages and limitations; however, all implementations face major challenges with filtering of individual quantum states, scalable integration, deterministic multiplexing of selected quantum emitters, and on-chip excitation suppression. Here we overcome all of these challenges with a hybrid and scalable approach, where single III-V quantum emitters are positioned and deterministically integrated in a complementary metal-oxide-semiconductor-compatible photonic circuit. We demonstrate reconfigurable on-chip single-photon filtering and wavelength division multiplexing with a foot print one million times smaller than similar table-top approaches, while offering excitation suppression of more than 95 dB and efficient routing of single photons over a bandwidth of 40 nm. Our work marks an important step to harvest quantum optical technologies' full potential.Combining different integration platforms on the same chip is currently one of the main challenges for quantum technologies. Here, Elshaari et al. show III-V Quantum Dots embedded in nanowires operating in a CMOS compatible circuit, with controlled on-chip filtering and tunable routing.

8.
Nano Lett ; 16(4): 2289-94, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26954298

RESUMO

A major step toward fully integrated quantum optics is the deterministic incorporation of high quality single photon sources in on-chip optical circuits. We show a novel hybrid approach in which preselected III-V single quantum dots in nanowires are transferred and integrated in silicon based photonic circuits. The quantum emitters maintain their high optical quality after integration as verified by measuring a low multiphoton probability of 0.07 ± 0.07 and emission line width as narrow as 3.45 ± 0.48 GHz. Our approach allows for optimum alignment of the quantum dot light emission to the fundamental waveguide mode resulting in very high coupling efficiencies. We estimate a coupling efficiency of 24.3 ± 1.7% from the studied single-photon source to the photonic channel and further show by finite-difference time-domain simulations that for an optimized choice of material and design the efficiency can exceed 90%.

9.
Phys Rev Lett ; 108(26): 267403, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-23005013

RESUMO

We present the first single-shot images of ferromagnetic, nanoscale spin order taken with femtosecond x-ray pulses. X-ray-induced electron and spin dynamics can be outrun with pulses shorter than 80 fs in the investigated fluence regime, and no permanent aftereffects in the samples are observed below a fluence of 25 mJ/cm(2). Employing resonant spatially muliplexed x-ray holography results in a low imaging threshold of 5 mJ/cm(2). Our results open new ways to combine ultrafast laser spectroscopy with sequential snapshot imaging on a single sample, generating a movie of excited state dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...