Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 121: 250-262, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33242639

RESUMO

Protection or repair of the nigrostriatal pathway represents a principal disease-modifying therapeutic strategy for Parkinson's disease (PD). Glial cell line-derived neurotrophic factor (GDNF) holds great therapeutic potential for PD, but its efficacious delivery remains difficult. The aim of this study was to evaluate the potential of different biomaterials (hydrogels, microspheres, cryogels and microcontact printed surfaces) for reconstructing the nigrostriatal pathway in organotypic co-culture of ventral mesencephalon and dorsal striatum. The biomaterials (either alone or loaded with GDNF) were locally applied onto the brain co-slices and fiber growth between the co-slices was evaluated after three weeks in culture based on staining for tyrosine hydroxylase (TH). Collagen hydrogels loaded with GDNF slightly promoted the TH+ nerve fiber growth towards the dorsal striatum, while GDNF loaded microspheres embedded within the hydrogels did not provide an improvement. Cryogels alone or loaded with GDNF also enhanced TH+ fiber growth. Lines of GDNF immobilized onto the membrane inserts via microcontact printing also significantly improved TH+ fiber growth. In conclusion, this study shows that various biomaterials and tissue engineering techniques can be employed to regenerate the nigrostriatal pathway in organotypic brain slices. This comparison of techniques highlights the relative merits of different technologies that researchers can use/develop for neuronal regeneration strategies.


Assuntos
Materiais Biocompatíveis , Substância Negra , Animais , Técnicas de Cocultura , Corpo Estriado/metabolismo , Dopamina , Mesencéfalo/metabolismo , Camundongos Endogâmicos C57BL , Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
2.
Front Neurol ; 11: 359, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32595581

RESUMO

Alzheimer's disease is a severe neurodegenerative brain disorder and characterized by deposition of extracellular toxic ß-amyloid (42) plaques and the formation of intracellular tau neurofibrillary tangles. In addition, ß-amyloid peptide deposits are found in the walls of small to medium blood vessels termed cerebral amyloid angiopathy (CAA). However, the pathogenesis of CAA appears to differ from that of senile plaques in several aspects. The aim of the present study was to analyze different lipids [phosphatidylcholines (PCs) and lysoPCs] in platelets and plasma of a novel mouse model of sporadic CAA (1). Our data show that lipids are significantly altered in plasma of the CAA mice. Levels of eight diacyl PCs, two acyl-alkyl PCs, and five lysoPCs were significantly increased. In extracts of mouse blood platelets, four diacyl and two acyl-alkyl PCs (but not lysoPCs) were significantly altered. Our data show that lipids are changed in CAA with a specific pattern, and we provide for the first time evidence that selected platelet and plasma PCs may help to characterize CAA.

3.
Neural Regen Res ; 15(3): 401-406, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31571648

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common form of dementia worldwide. As age is the main risk factor, > 97% of all AD cases are of sporadic origin, potentiated by various risk factors associated with life style and starting at an age > 60 years. Only < 3% of AD cases are of genetic origin caused by mutations in the amyloid precursor protein or Presenilins 1 or 2, and symptoms already start at an age < 30 years. In order to study progression of AD, as well as therapeutic strategies, mouse models are state-of-the-art. So far many transgenic mouse models have been developed and used, with mutations in the APP or presenilin or combinations (3×Tg, 5×Tg). However, such transgenic mouse models more likely mimic the genetic form of AD and no information can be given how sporadic forms develop. Several risk genes, such as Apolipoprotein E4 and TREM-2 enhance the risk of sporadic AD, but also many risk factors associated with life style (e.g., diabetes, hypercholesterolemia, stress) may play a role. In this review we discuss the current situation regarding AD mouse models, and the problems to develop a sporadic mouse model of AD.

4.
Brain Behav Immun ; 78: 52-64, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30664922

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative brain disorder and the most common form of dementia coming along with cerebral amyloid angiopathy (CAA) in more than 70% of all cases. However, CAA occurs also in pure form without AD pathology. Vascular life style risk factors such as obesity, hypertension, hypercholesterolemia, diabetes, stress or an old age play an important role in the progression of CAA. So far, no animal model for sporadic CAA has been reported, thus the aim of the present study was to create and characterize a new mouse model for sporadic CAA by treatment with different vascular risk factors. Healthy C57BL6 mice were treated with lifestyle vascular risk factors for 35 or 56 weeks: lipopolysaccharide, social stress, streptozotozin, high cholesterol diet and copper in the drinking water. Four behavioral tests (black-white box, classical maze, cheeseboard maze and plus-maze discriminative avoidance task) showed impaired learning, memory and executive functions as well as anxiety with increased age. The treated animals exhibited increased plasma levels of cortisol, insulin, interleukin-1ß, glucose and cholesterol, confirming the effectiveness of the treatment. Confocal microscopy analysis displayed severe vessel damage already after 35 weeks of treatment. IgG positive staining points to a severe blood-brain barrier (BBB) disruption and furthermore, cerebral bleedings were observed in a much higher amount in the treatment group. Importantly, inclusions of beta-amyloid in the vessels indicated the development of CAA, but no deposition of beta-amyloid plaques and tau pathology in the brains were seen. Taken together, we characterized a novel sporadic CAA mouse model, which offers a strategy to study the progression of the disease and therapeutic and diagnostic interventions.


Assuntos
Doença de Alzheimer/etiologia , Doença de Alzheimer/patologia , Angiopatia Amiloide Cerebral/etiologia , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Angiopatia Amiloide Cerebral/patologia , Hemorragia Cerebral/patologia , Diabetes Mellitus , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Hipercolesterolemia , Hipertensão , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade , Placa Amiloide , Fatores de Risco , Estresse Psicológico
5.
Sci Rep ; 8(1): 15483, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30341392

RESUMO

Platelets are anuclear blood cells and play a major role in hemostasis and thrombosis. Platelets express amyloid-precursor protein (APP), release beta-amyloid (Aß) and are stimulated (pre-activated) in Alzheimer's disease (AD). We hypothesize that such stimulated platelets severely damage brain vessels which subsequently leads to cerebrovascular damage in AD. In order to study this issue we isolated platelets from AD mice (expressing APP with the Swedish-Dutch-Iowa mutations), labeled them with the red fluorescent dye PKH26 and transcardially infused these freshly isolated platelets into the brains of anesthetized healthy C57BL6 wildtype mice. Brains were immediately taken, 110 µm thick organotypic brain slices prepared and cultured for 1 or 14 days. We observed that red PKH26+ fluorescent platelets were localized in collagen IV and Lectin-649 counterstained cortical brain vessels and that platelets from AD mice severely damaged cortical brain vessels in wildtype mice and entered the brain parenchyma. Confocal microscopy showed immunoreactivity for matrix metalloproteinases (MMP-2 and MMP-9) and beta-amyloid around these platelets. The effect was completely inhibited with an MMP inhibitor. Furthermore, isolated AD platelets caused inflammation and activated microglia around the site where platelets damaged cortical brain vessels. We conclude that AD-derived platelets more aggressively damage healthy vessels which may consequently play a role in the progression of cerebral amyloid angiopathy in AD.


Assuntos
Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Plaquetas/patologia , Vasos Sanguíneos/patologia , Córtex Cerebral/patologia , Encefalite/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Modelos Animais de Doenças , Metaloproteinase 2 da Matriz/análise , Metaloproteinase 9 da Matriz/análise , Camundongos Endogâmicos C57BL , Microscopia Confocal , Modelos Biológicos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo
6.
Front Aging Neurosci ; 10: 113, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29725295

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder of the brain, characterized by extracellular aggregation of beta-amyloid (Aß) and hyperphosphorylation of tau causing intraneuronal neurofibrillary tangles (NFTs). There is urgent need to study the interactions between Aß and tau, especially to solve the question of the pathological cascade. In the present study, we aim to develop a model of organotypic brain slices in which both plaque and tau pathology can be examined. Organotypic brain slices (150 µm thick, coronal, at the hippocampal level) from adult (9 month) wildtype (WT, C57BL/6N) and transgenic AD mice (TG, APP_SweDI) were cultured for 2 weeks. To induce tau hyperphosphorylation 100 nM okadaic acid (OA), 10 µM wortmannin (WM) or both were added to the slices. Hyperphosphorylation of tau was tested at tau-S199, tau-T231 and tau-S396 using Western blot. Our data show that in TG mice with plaques a 50 kDa fragment of tau-S396 was hyperphosphorylated and that OA induced hyperphosphorylation of tau-S199. In WT mice (without plaques) OA caused hyperphosphorylation of a 50 kDa and a 38 kDa tau-T231 form and a 25 kDa sdftau-S396 fragment. The N-methyl-D-aspartate (NMDA) antagonist MK801 (1 µM) did not block these effects. Immunohistochemistry showed diffuse increased tau-S396 and tau-T231-like immunoreactivities at the hippocampal level but no formation of NFTs. Confocal microscopy indicated, that pTau-T231 was preferentially located in cytoplasma surrounding nuclei whereas pTau-S396 was found mainly in nerve fibers and strongly associated with plaques. In conclusion we provide a novel in vitro model to study both plaque and tau hyperphosphorylation but not NFTs, which could be useful to study pathological processes in AD and to screen for drugs.

7.
J Neurosci Methods ; 295: 77-86, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29221639

RESUMO

BACKGROUND: Alzheimers disease is accompanied by cell death of cholinergic neurons, resulting in cognitive impairment and memory loss. Nerve growth factor (NGF) is the most potent protein to support survival of cholinergic neurons. NEW METHOD: Organotypic brain slices of the basal nucleus of Meynert (nBM) are a valuable tool to study cell death of axotomized cholinergic neurons, as well as protective effects of NGF added into the medium. The aim of the present study is to use collagen scaffolds crosslinked with polyethyleneglycole and load with NGF to target delivery of NGF to organotypic nBM brain slices. RESULTS: Collagen scaffolds (visualized by incorporating AlexaFluor 488 antibodies) slowly degraded when applied onto organotypic brain slices within 2 weeks in culture. GFAP reactive astrocytes and Iba1+ microglia became visible around the collagen scaffolds 7days after incubation, showing reactive gliosis. Cholinergic neurons of the nBM survived (201±21, n=8) when incubated with 100ng/ml NGF in the medium compared to NGF-free medium (69±12, n=7). Collagen scaffolds loaded with NGF (1ng/2µl scaffold) significantly rescued cholinergic cell death in the nBM brain slices (175±12, n=10), which was counteracted by an anti-NGF antibody (77±5, n=5). COMPARISON WITH EXISTING METHODS: The combination of coronal brain slices with biomaterial is a novel and potent tool to selectively study neuroprotective effects. CONCLUSIONS: Collagen scaffolds loaded with low amounts of a protein/drug of interest can be easily applied directly onto organotypic brain slices, allowing slow targeted release of a protective molecule. Such an approach is highly useful to optimize CollScaff for further in vivo applications.


Assuntos
Núcleo Basal de Meynert/efeitos dos fármacos , Neurônios Colinérgicos/efeitos dos fármacos , Fator de Crescimento Neural/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Técnicas de Cultura de Tecidos/instrumentação , Alicerces Teciduais , Animais , Núcleo Basal de Meynert/metabolismo , Núcleo Basal de Meynert/patologia , Morte Celular/fisiologia , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/patologia , Colágeno , Meios de Cultura , Gliose/metabolismo , Gliose/patologia , Camundongos Endogâmicos C57BL , Fator de Crescimento Neural/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Neuroproteção/fisiologia , Polietilenoglicóis , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...