Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioelectrochemistry ; 56(1-2): 85-90, 2002 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-12009450

RESUMO

Up to now, the development of the electrochemical DNA hybridization sensors relied on solid electrodes, on which both the hybridization and detection steps have been performed. Here we propose a new method in which the DNA hybridization is performed at commercially available magnetic beads and electrochemical detection on detection electrodes (DE). Due to minimum nonspecific DNA adsorption at the magnetic beads, very high specificity of the DNA hybridization is achieved. Optimum DE can be chosen only with respect to the given electrode process. It is shown that high sensitivity and specificity in the detection of relatively long target DNAs can be obtained (a) by using cathodic stripping voltammetry at mercury or solid mercury amalgam DEs for the determination of purine bases, released from DNA by acid treatment, and (b) by enzyme-linked immunoassay of target DNA modified by osmium tetroxide,2,2'-bipyridine (Os,bipy) at carbon DEs. Direct determination of Os,bipy at mercury and carbon electrodes is also possible.


Assuntos
Técnicas Biossensoriais , DNA/química , Eletroquímica/métodos , Hibridização de Ácido Nucleico , RNA/química , Sensibilidade e Especificidade
3.
Biosens Bioelectron ; 15(3-4): 107-15, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11286327

RESUMO

Damage to DNA frequently involves interruption of DNA sugar-phosphate strands (strand breaks, sb). Under aerobic conditions, transition metal ions cause DNA damage through production of reactive oxygen species (frequently via Fenton-type reactions). Formation of sb in covalently closed supercoiled (sc) DNA can be detected using an electrochemical biosensor based on a scDNA-modified mercury electrode. By controlling the potential of the electrode, this technique can be employed in studies of redox reactions involved in formation of DNA strand breaks, and to detect species involved in these reactions. ScDNA anchored at HMDE was cleaved by catalytic amounts of iron/EDTA ions in the absence of chemical reductants when appropriate electrode potential (sufficiently negative to reduce [Fe(EDTA)]- to [Fe(EDTA)]2-) was applied. The process required oxygen or hydrogen peroxide. The extent of DNA damage increased with the shift of the electrode potential to negative values, displaying a sharp inflection point matching the potential of [Fe(EDTA)]2-/[Fe(EDTA)]- redox pair. In the absence of transition metal ions, significant DNA damage was observed at potentials sufficiently negative for reduction of dioxygen at the mercury electrode. This observation suggests cleavage of the surface-attached scDNA by radical intermediates of oxygen reduction at HMDE.


Assuntos
Técnicas Biossensoriais/métodos , Dano ao DNA , DNA Super-Helicoidal/química , Ácido Edético , Eletroquímica/métodos , Eletrodos , Peróxido de Hidrogênio , Radical Hidroxila , Ferro , Oxirredução
4.
J Biomol Struct Dyn ; 17 Suppl 1: 177-83, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-22607421

RESUMO

Summary Wild type human full length (f.1.) tumor suppressor p53 protein binds preferentially to super-coiled (sc) DNA in vitro both in the presence and absence of the p53 consensus sequence (p53CON). This binding produces a ladder of retarded bands on the agarose gel. Bands revealed by immunoblotting with antibody DO-1 corresponded to the ethidium stained retarded bands. The intensity and the number of bands of p53-scDNA complex were decreased by physiological concentrations of unchelated zinc ions. Nickel and cobalt ions inhibited binding of p53 to scDNA and to p53CON in linear DNA fragments less efficiently than zinc. Compared to the intrinsic zinc strongly bound to Cys 176, Cys 238, Cys 242 and His 179 in the p53 core domain, binding of additional Zn(2+) to p53 was much weaker as shown by an easy removal of the latter ions by low concentrations of EDTA. Oxidation of the protein with diamide resulted in a decrease of the number of the retarded bands. Under the same conditions, no binding of oxidized p53 to p53CON in a linear DNA fragment was observed. In agreement with the literature oxidation of f.1. p53 with diamide was irreversible and was not reverted by an excess of DTT. We showed that in the presence of 0.1 mM zinc ions, oxidation of p53 became reversible. Other divalent cations tested (cadmium, cobalt, nickel) exhibited no such effect. We suggested that the irreversibility of p53 oxidation was due, at least in part, to the removal of intrinsic zinc from its position in the DNA binding domain (after oxidation of the three cysteines to which the zinc ion is coordinated in the reduced protein) accompanied by a change in the p53 conformation. Binding of C-terminal anti-p53 antibody also protected bacterially expressed protein against irreversible loss of activity due to diamide oxidation. Binding the human p53 core domain (segment 94-312) to scDNA greatly differed from that observed with the full-length p53. The core domain did not posses the ability to bind strongly to many sites in scDNA regardless of the presence or absence of p53CON suggesting involvement of some other domain (probably C-terminal) in binding of the full-length p53 to scDNA. Supershift experiments using antibodies against p53 N- or C-terminus suggested that in oxidized p53, scDNA binding through the C-terminus gained importance.


Assuntos
DNA Super-Helicoidal , Oxidantes , Sítios de Ligação , DNA/química , Humanos , Metais , Ligação Proteica , Proteína Supressora de Tumor p53/química
5.
J Biol Chem ; 274(36): 25749-55, 1999 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-10464313

RESUMO

The binding of p53 to its DNA consensus sequence is modulated by the redox state of the protein in vitro. We have shown previously that reduced wild-type p53 binds strongly to supercoiled DNA (scDNA) regardless of the presence or absence of p53CON. Here we compare the effects of oxidation of p53 by azodicarboxylic acid bis[dimethylamide] (diamide) and other agents on p53 binding to p53CON and to scDNA. Oxidation decreases the binding of p53 to scDNA; however, under conditions where binding to p53CON in a DNA fragment is completely abolished, some residual binding to scDNA is still observed. Increasing the concentration of oxidized p53 confers minimal changes in p53 binding to both scDNA and p53CON. Reduction of the oxidized protein by dithiothreitol neither restores its binding to DNA nor to p53CON in DNA fragments. In the presence of excess zinc ions, oxidation of p53 is, however, reversible. We conclude that the irreversibility of p53 oxidation is due, at least in part, to the removal of intrinsic zinc from its position in the DNA binding domain accompanied by a conformational change of the p53 molecule after oxidation of the three cysteines to which the zinc ion is coordinated in the reduced protein.


Assuntos
DNA/metabolismo , Proteína Supressora de Tumor p53/metabolismo , DNA/química , Humanos , Conformação de Ácido Nucleico , Oxirredução , Ligação Proteica
6.
Biosens Bioelectron ; 13(6): 621-8, 1998 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-9828356

RESUMO

Recent trends in the development of DNA biosensors for nucleotide sequence-specific DNA hybridization and for the detection of the DNA damage are briefly reviewed. Changes in the redox signals of base residues in DNA immobilized at the surface of carbon or mercury electrodes can be used as a sign of the damage of DNA bases. Some compounds interacting with DNA can produce their own redox signals on binding to DNA. Covalently closed circular (usually supercoiled) DNA attached to the electrode surface can be used for a sensitive detection of a single break of the DNA sugar-phosphate backbone and for detection of agents cleaving the DNA backbone such as hydroxyl radicals, ionizing radiation, nucleases, etc. Using the peptide nucleic acid in the biosensor recognition layer greatly increased the specificity of the DNA hybridization biosensor making it possible to detect point mutations (single-base mismatches) in DNA.


Assuntos
Técnicas Biossensoriais , Dano ao DNA , DNA/análise , Hibridização de Ácido Nucleico , Animais , DNA/genética , Humanos
7.
Biochemistry ; 37(14): 4853-62, 1998 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-9538002

RESUMO

The adsorption behavior of covalently closed circular plasmid DNA at the mercury/water interface was studied by means of AC impedance measurements. The dependence of the differential capacitance (C) of the electrode double layer on the potential (E) was measured in the presence of adsorbed DNA. It was found that the C-E curves of supercoiled DNA at native and highly negative superhelix densities (sigma), relaxed covalently closed circular DNA, and nicked DNA differed from each other. A detailed study of topoisomer distributions ranging from -sigma of 0 to 0.11 revealed two supercoiling-dependent transitions, at about -sigma = 0.04 (transition TI) and 0.07 (transition TII). Transition TI was detected by measuring the height of the adsorption/desorption peak 1 (at about -1.2 V against the saturated calomel electrode) and the decrease of capacitance (DeltaC) at -0.35 V. This transition may be due to a sudden change in the ability of the DNA to respond to the alternating voltage, probably caused by changes in the DNA tertiary and/or secondary structure. Transition TII was detected by measuring peak 3* (at about -1.3 V), which was absent in topoisomers with -sigma less than 0.05. This transition is due to changes in the DNA adsorption/desorption behavior related to increased accessibility of bases at elevated negative superhelix density. Opening of the duplex at highly negative superhelix density was also detected by the single-strand selective probe of DNA structure, osmium tetroxide, 2, 2'-bipyridine. Our results suggest that electrochemical techniques provide sensitive experimental analysis of changes in DNA structure.


Assuntos
DNA Super-Helicoidal/química , Adsorção , DNA Super-Helicoidal/metabolismo , Eletroquímica , Hidrólise , Conformação de Ácido Nucleico , Plasmídeos , Endonucleases Específicas para DNA e RNA de Cadeia Simples/metabolismo
8.
Talanta ; 46(1): 155-61, 1998 May.
Artigo em Inglês | MEDLINE | ID: mdl-18967139

RESUMO

DNA-damaging agents in the environment represent a serious danger to human health. We use a supercoiled DNA-modified mercury electrode as a fast-response biosensor for the detection of DNA strand cleaving agents. The sensor is based on a strong difference between the a.c. voltammetric responses of covalently closed circular (supercoiled) and of open circular (nicked) plasmid DNA. We show that the sensor can detect hydroxyl radicals in laboratory-prepared solutions and in various natural and industrial water samples. The sensor is also capable of detecting unknown DNA-damaging agents in industrial waters.

9.
Biophys J ; 72(5): 2285-93, 1997 May.
Artigo em Inglês | MEDLINE | ID: mdl-9129832

RESUMO

Adsorption behavior of peptide nucleic acid (PNA) and DNA decamers (GTAGATCACT and the complementary sequence) on a mercury surface was studied by means of AC impedance measurements at a hanging mercury drop electrode. The nucleic acid was first attached to the electrode by adsorption from a 5-microliter drop of PNA (or DNA) solution, and the electrode with the adsorbed nucleic acid layer was then washed and immersed in the blank background electrolyte where the differential capacity C of the electrode double layer was measured as a function of the applied potential E. It was found that the adsorption behavior of the PNA with an electrically neutral backbone differs greatly from that of the DNA (with a negatively charged backbone), whereas the DNA-PNA hybrid shows intermediate behavior. At higher surface coverage PNA molecules associate at the surface, and the minimum value of C is shifted to negative potentials because of intermolecular interactions of PNA at the surface. Prolonged exposure of PNA to highly negative potentials does not result in PNA desorption, whereas almost all of the DNA is removed from the surface at these potentials. Adsorption of PNA decreases with increasing NaCl concentration in the range from 0 to 50 mM NaCl, in contrast to DNA, the adsorption of which increases under the same conditions.


Assuntos
DNA/farmacocinética , Modelos Químicos , Oligonucleotídeos/farmacocinética , Oligopeptídeos/farmacocinética , Adsorção , Impedância Elétrica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...