Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Rec ; 24(2): e202300170, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37358335

RESUMO

Theoretical challenges in describing molecules with anomalously long single C-C bonds are analyzed in terms of the relative contributions of stabilizing and destabilizing intramolecular interactions. Diamondoid dimers that are stable despite the presence of C-C bonds up to 1.7 Šlong, as well as other bulky molecules stabilized due to intramolecular noncovalent interactions (London dispersions) are discussed. The unexpected stability of highly crowded molecules, such as diamondoid dimers and tert-butyl-substituted hexaphenylethanes, calls for reconsideration of the "steric effect" traditionally thought to destabilize the molecule. Alternatively, "steric attraction" helps to understand bonding in sterically overloaded molecules, whose structural and energetic analysis requires a proper theoretical description of noncovalent interactions.

2.
J Org Chem ; 88(19): 14172-14177, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37728993

RESUMO

anti- and syn-sesquihomodiamantenes (SDs) were prepared and structurally characterized. anti-SD and parent sesquihomoadamantene were CH-bond functionalized by utilizing a phase-transfer protocol. The density functional theory-computed ionization potentials of unsaturated diamondoid dimers correlate well with the experimental oxidation potentials obtained from cyclic voltammetry. Similar geometries ensue for both the reduced and ionized SD states, whose persistence is supported by the ß-hydrogen's spatial sheltering. This makes SDs promising building blocks for the construction of diamond materials with high stability and carrier mobility.

3.
Chemistry ; 29(70): e202302454, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37731162

RESUMO

Herein, we present previously unavailable C(sp3 )-rich polycyclic hydrocarbon scaffolds that have the potential to become valuable tools in medicinal chemistry and crop science as saturated bioisosteres of benzenoids. We have developed a scalable protocol (up to 50 g from a single synthetic run) for the synthesis of tricyclo[3.3.0.03,7 ]octane (bisnoradamantane or stellane) 1,5-dicarboxylic acid derivatives. X-ray crystallographic analysis of the stellane 1,5-dicarboxylic acid dimethyl ester has revealed that this scaffold is an optimal saturated isostere for ortho-disubstituted benzene where substituents exhibit in-plane topology. The synthetic protocol is based on the oxidative cyclization of dimethyl octahydropentalene-2,5-dicarboxylate (DMOD) through lithiation followed by I2 oxidation. The reaction outcome is determined by the stereochemistry of the substrate. While the endo,endo cis-DMOD, exclusively gives the "unwanted" Claisen cyclization product, the exo,endo cis- and exo,exo cis- stereoisomers afford the desired stellane 1,5-dicarboxylic acid dimethyl ester quantitatively. DFT computations have revealed that the reaction proceeds via the dianion of dimethyl octahydropentalene-2,5-dicarboxylate, which undergoes SET oxidation by I2 to form a radical anion. The subsequent cyclization followed by a second SET oxidation gives the desired stellane derivative.

4.
Org Lett ; 24(27): 4845-4849, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35559604

RESUMO

We present a strategy for the skeletal editing of diamondoid structures to selectively displace methylene for heteroatom moieties in the carbon framework. This constitutes a synthetic approach to doping diamond-like structures with electron donor dopants (O, N, and S). The key steps involve two subsequent retro-Barbier fragmentations followed by cage reconstruction in the presence of a dopant. Remarkably, the incorporation of n-dopants reduces the strain of the diamondoid cage as shown through homodesmotic equations.

5.
High Alt Med Biol ; 22(3): 308-316, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34314614

RESUMO

Ivonina, Natalya I., Andrey A. Fokin, and Irina M. Roshchevskaya. Body surface potential mapping during heart ventricular repolarization in male swimmers and untrained persons under hypoxic and hypercapnic hypoxia. High Alt Med Biol. 22:308-316, 2021. Background: In swimmers, as a result of prolonged breath-holding during swimming, first hypoxic hypoxia (HH) and then hypercapnic hypoxia (HCH) occurs, which may influence the electrical activity of the heart (EAH). What type of normobaric hypoxia more strongly affects the EAH-normocapnic HH or HCH? Methods: The electrical activity of swimmers' hearts (n = 7) and untrained persons (n = 10) was studied by using electrocardiography (ECG) and body surface potential mapping (BSPM) during the period of ventricular repolarization at baseline, at normocapnic HH, at HCH, and in the recovery period. Results: HH led to more significant changes in the EAH in all participants in comparison with HCH. There was no change in the amplitude of T waveECG at hypoxic and HCH, but a change in the amplitude of the minimum was noted in BSPM. The minimum in athletes changed by the end of the exposure (from -0.40 ± 0.12 mV to -0.26 ± 0.11 mV, p = 0.001); in the control, it decreased earlier (after 8 minutes of exposure to HH, the amplitude of the minimum was -0.24 ± 0.08 mV, p = 0.026). With HH, the duration of the QT interval in athletes was shortened due to the shortening of the J-Tpeak (from 250 to 188 ms, p = 0.001) and the Tpeak-Tend (from 98 to 86 ms) intervals. In controls, the decrease in the QT interval was due to the J-Tpeak shortening only (from 280 to 200 ms, p = 0.026). Conclusions: In the study of the effect of hypoxia on the EAH during ventricular repolarization, the use of the BSPM has proven to be more informative than the use of traditional ECG. When using potential mapping, more significant changes in ventricular repolarization at HH than at HCH were revealed, whereas the parameters changed less in swimmers compared with the baseline than in controls during both exposures.


Assuntos
Mapeamento Potencial de Superfície Corporal , Ventrículos do Coração , Eletrocardiografia , Coração , Humanos , Hipóxia , Masculino
6.
Dalton Trans ; 49(40): 14009-14016, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33078783

RESUMO

Platinum-based antineoplastic agents play a major role in the treatment of numerous types of cancer. A new bulky, lipophilic, and chiral ligand based on 1,2-diaminodiamantane in both of its enantiomeric forms was employed for the preparation of new platinum(ii) complexes with chloride and oxalate ligands. The dichloride complexes have a higher solubility and were evaluated as anti-proliferation agents for human ovarian cancer cell lines A2780 and cisplatin-resistant A2780cis. Its R,R-enantiomer showed increased efficacy compared to cisplatin for both cancer cell lines. A chromatographic approach was used to estimate the solvent partition coefficient of the dichloride complex. The binding of diamondoid-based platinum complexes to nucleotides was tested for both enantiomers with guanosine monophosphate (GMP) and deoxyguanosine monophosphate (dGMP) and occurs at a similar or faster rate for both isomers compared to cisplatin despite greatly increased steric demand. These findings highlight the potential in 1,2-diaminodiamantane as a viable pharmacophore.


Assuntos
Antineoplásicos/síntese química , Complexos de Coordenação/síntese química , Compostos Organoplatínicos/síntese química , Neoplasias Ovarianas/tratamento farmacológico , Platina/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Complexos de Coordenação/farmacologia , Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos , Feminino , Guanosina Monofosfato/química , Humanos , Isomerismo , Ligantes , Conformação Molecular , Compostos Organoplatínicos/farmacologia , Relação Estrutura-Atividade
7.
Angew Chem Int Ed Engl ; 58(29): 9933-9938, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31087744

RESUMO

Diamondoids, sp3 -hybridized nanometer-sized diamond-like hydrocarbons (nanodiamonds), difunctionalized with hydroxy and primary phosphine oxide groups, enable the assembly of the first sp3 -C-based chemical sensors by vapor deposition. Both pristine nanodiamonds and palladium nanolayered composites can be used to detect toxic NO2 and NH3 gases. This carbon-based gas sensor technology allows reversible NO2 detection down to 50 ppb and NH3 detection at 25-100 ppm concentration with fast response and recovery processes at 100 °C. Reversible gas adsorption and detection is compatible with 50 % humidity conditions. Semiconducting p-type sensing properties are achieved from devices based on primary phosphine-diamantanol, in which high specific area (ca. 140 m2 g-1 ) and channel nanoporosity derive from H-bonding.

8.
Proc Natl Acad Sci U S A ; 115(33): 8284-8289, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30068609

RESUMO

Nucleation is a core scientific concept that describes the formation of new phases and materials. While classical nucleation theory is applied across wide-ranging fields, nucleation energy landscapes have never been directly measured at the atomic level, and experiments suggest that nucleation rates often greatly exceed the predictions of classical nucleation theory. Multistep nucleation via metastable states could explain unexpectedly rapid nucleation in many contexts, yet experimental energy landscapes supporting such mechanisms are scarce, particularly at nanoscale dimensions. In this work, we measured the nucleation energy landscape of diamond during chemical vapor deposition, using a series of diamondoid molecules as atomically defined protonuclei. We find that 26-carbon atom clusters, which do not contain a single bulk atom, are postcritical nuclei and measure the nucleation barrier to be more than four orders of magnitude smaller than prior bulk estimations. These data support both classical and nonclassical concepts for multistep nucleation and growth during the gas-phase synthesis of diamond and other semiconductors. More broadly, these measurements provide experimental evidence that agrees with recent conceptual proposals of multistep nucleation pathways with metastable molecular precursors in diverse processes, ranging from cloud formation to protein crystallization, and nanoparticle synthesis.

9.
Chemistry ; 24(58): 15543-15549, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30028044

RESUMO

A simple imine clip-and-cleave concept has been developed for the selective hydroxylation of non-activated CH bonds in aliphatic aldehydes with dioxygen through a copper complex. The synthetic protocol involves reaction of a substrate aldehyde with N,N-diethyl-ethylendiamine to give the corresponding imine, which is used as a bidentate donor ligand forming a copper(I) complex with [Cu(CH3 CN)4 ][CF3 SO3 ]. After exposure of the reaction mixture to dioxygen acidic cleavage and aqueous workup liberates the corresponding ß-hydroxylated aldehyde. The concept for the hydroxylation of trimethylacetaldehyde as well as adamantane and diamantane 1-carbaldehydes was investigated and the corresponding ß-hydroxy aldehydes were obtained with high selectivities. The results of low temperature stopped-flow measurements indicate the formation of a bis(µ-oxido)dicopper complex as reactive intermediate. According to density functional theory (DFT, RI-BLYP-D3/def2-TZVP(SDD)/ COSMO(CH2 Cl2 )//RI-PBE-D3/def2-TZVP(SDD)) computations CH bonds suitably predisposed to the [Cu2 O2 ]2+ core undergo hydroxylation in a concerted step with particularly low activation barriers, which explains the experimentally observed regioselectivities.

10.
Nature ; 554(7693): 505-510, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29469090

RESUMO

Mechanical stimuli can modify the energy landscape of chemical reactions and enable reaction pathways, offering a synthetic strategy that complements conventional chemistry. These mechanochemical mechanisms have been studied extensively in one-dimensional polymers under tensile stress using ring-opening and reorganization, polymer unzipping and disulfide reduction as model reactions. In these systems, the pulling force stretches chemical bonds, initiating the reaction. Additionally, it has been shown that forces orthogonal to the chemical bonds can alter the rate of bond dissociation. However, these bond activation mechanisms have not been possible under isotropic, compressive stress (that is, hydrostatic pressure). Here we show that mechanochemistry through isotropic compression is possible by molecularly engineering structures that can translate macroscopic isotropic stress into molecular-level anisotropic strain. We engineer molecules with mechanically heterogeneous components-a compressible ('soft') mechanophore and incompressible ('hard') ligands. In these 'molecular anvils', isotropic stress leads to relative motions of the rigid ligands, anisotropically deforming the compressible mechanophore and activating bonds. Conversely, rigid ligands in steric contact impede relative motion, blocking reactivity. We combine experiments and computations to demonstrate hydrostatic-pressure-driven redox reactions in metal-organic chalcogenides that incorporate molecular elements that have heterogeneous compressibility, in which bending of bond angles or shearing of adjacent chains activates the metal-chalcogen bonds, leading to the formation of the elemental metal. These results reveal an unexplored reaction mechanism and suggest possible strategies for high-specificity mechanosynthesis.

11.
Nano Lett ; 18(2): 1099-1103, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29286670

RESUMO

The monochromatic photoemission from diamondoid monolayers provides a new strategy to create electron sources with low energy dispersion and enables compact electron guns with high brightness and low beam emittance for aberration-free imaging, lithography, and accelerators. However, these potential applications are hindered by degradation of diamondoid monolayers under photon irradiation and electron bombardment. Here, we report a graphene-protected diamondoid monolayer photocathode with 4-fold enhancement of stability compared to the bare diamondoid counterpart. The single-layer graphene overcoating preserves the monochromaticity of the photoelectrons, showing 12.5 meV ful width at half-maximum distribution of kinetic energy. Importantly, the graphene coating effectively suppresses desorption of the diamondoid monolayer, enhancing its thermal stability by at least 100 K. Furthermore, by comparing the decay rate at different photon energies, we identify electron bombardment as the principle decay pathway for diamondoids under graphene protection. This provides a generic approach for stabilizing volatile species on photocathode surfaces, which could greatly improve performance of electron emitters.

12.
J Am Chem Soc ; 139(46): 16696-16707, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29037036

RESUMO

The covalent diamantyl (C28H38) and oxadiamantyl (C26H34O2) dimers are stabilized by London dispersion attractions between the dimer moieties. Their solid-state and gas-phase structures were studied using a multitechnique approach, including single-crystal X-ray diffraction (XRD), gas-phase electron diffraction (GED), a combined GED/microwave (MW) spectroscopy study, and quantum chemical calculations. The inclusion of medium-range electron correlation as well as the London dispersion energy in density functional theory is essential to reproduce the experimental geometries. The conformational dynamics computed for C26H34O2 agree well with solution NMR data and help in the assignment of the gas-phase MW data to individual diastereomers. Both in the solid state and the gas phase the central C-C bond is of similar length for the diamantyl [XRD, 1.642(2) Å; GED, 1.630(5) Å] and the oxadiamantyl dimers [XRD, 1.643(1) Å; GED, 1.632(9) Å; GED+MW, 1.632(5) Å], despite the presence of two oxygen atoms. Out of a larger series of quantum chemical computations, the best match with the experimental reference data is achieved with the PBEh-3c, PBE0-D3, PBE0, B3PW91-D3, and M06-2X approaches. This is the first gas-phase confirmation that the markedly elongated C-C bond is an intrinsic feature of the molecule and that crystal packing effects have only a minor influence.

13.
J Chem Phys ; 147(4): 044303, 2017 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-28764360

RESUMO

The electronic properties of sp2/sp3 diamondoids in the crystalline state and in the gas phase are presented. Apparent differences in electronic properties experimentally observed by resonance Raman spectroscopy in the crystalline/gas phase and absorption measurements in the gas phase were investigated by density functional theory computations. Due to a reorganization of the molecular orbitals in the crystalline phase, the HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) energy gaps are lowered significantly by 0.5 eV-1 eV. The π → π* transition is responsible for large absorption in both gas and crystalline phases. It further causes a large increase in the Raman intensity of the C=C stretch vibration when excited resonantly. By resonance Raman spectroscopy we were able to determine the C=C bond length of the trishomocubane dimer to exhibit 1.33 Å in the ground and 1.41 Å in the excited state.

14.
Nat Mater ; 16(3): 349-355, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28024157

RESUMO

Controlling inorganic structure and dimensionality through structure-directing agents is a versatile approach for new materials synthesis that has been used extensively for metal-organic frameworks and coordination polymers. However, the lack of 'solid' inorganic cores requires charge transport through single-atom chains and/or organic groups, limiting their electronic properties. Here, we report that strongly interacting diamondoid structure-directing agents guide the growth of hybrid metal-organic chalcogenide nanowires with solid inorganic cores having three-atom cross-sections, representing the smallest possible nanowires. The strong van der Waals attraction between diamondoids overcomes steric repulsion leading to a cis configuration at the active growth front, enabling face-on addition of precursors for nanowire elongation. These nanowires have band-like electronic properties, low effective carrier masses and three orders-of-magnitude conductivity modulation by hole doping. This discovery highlights a previously unexplored regime of structure-directing agents compared with traditional surfactant, block copolymer or metal-organic framework linkers.


Assuntos
Calcogênios/química , Diamante/química , Condutividade Elétrica , Estruturas Metalorgânicas/química , Nanodiamantes/química , Nanotecnologia/métodos , Nanofios/química , Modelos Moleculares , Conformação Molecular
15.
J Org Chem ; 81(19): 8759-8769, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27560114

RESUMO

Direct unequal C-H bond difunctionalization of phosphorylated diamantane was achieved in high yield from the corresponding phosphonates. Reduction of the functionalized phosphonates provides access to novel primary and secondary alkyl/aryl diamantane phosphines. The prepared primary diamantyl phosphines are quite air stable compared to their adamantyl and especially alkyl or aryl analogues. This finding is corroborated by comparing the singly occupied molecular orbital energy levels of the corresponding phosphine radical cations obtained by density functional theory computations.

16.
J Org Chem ; 81(15): 6783-91, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27384450

RESUMO

The F···Ti bonding in the transition structures determines high trans- and syn-diastereoselectivities for aldol reactions of SF5-acetates with aldehydes in the presence of TiCl4 in the non-nucleophilic solvent CH2Cl2. Such bonding is canceled in nucleophilic solvents where opposite cis-stereochemistry is observed. The potential of thus obtained stereoisomeric SF5-aryl acrylates as dipolarophiles in the preparation of SF5-containing heterocycles is demonstrated.

17.
Nat Nanotechnol ; 11(3): 267-72, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26641529

RESUMO

Electron emission is critical for a host of modern fabrication and analysis applications including mass spectrometry, electron imaging and nanopatterning. Here, we report that monolayers of diamondoids effectively confer dramatically enhanced field emission properties to metal surfaces. We attribute the improved emission to a significant reduction of the work function rather than a geometric enhancement. This effect depends on the particular diamondoid isomer, with [121]tetramantane-2-thiol reducing gold's work function from ∼ 5.1 eV to 1.60 ± 0.3 eV, corresponding to an increase in current by a factor of over 13,000. This reduction in work function is the largest reported for any organic species and also the largest for any air-stable compound. This effect was not observed for sp(3)-hybridized alkanes, nor for smaller diamondoid molecules. The magnitude of the enhancement, molecule specificity and elimination of gold metal rearrangement precludes geometric factors as the dominant contribution. Instead, we attribute this effect to the stable radical cation of diamondoids. Our computed enhancement due to a positively charged radical cation was in agreement with the measured work functions to within ± 0.3 eV, suggesting a new paradigm for low-work-function coatings based on the design of nanoparticles with stable radical cations.

18.
Nano Lett ; 16(1): 212-7, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26695059

RESUMO

We demonstrate a new approach for engineering group IV semiconductor-based quantum photonic structures containing negatively charged silicon-vacancy (SiV(-)) color centers in diamond as quantum emitters. Hybrid diamond-SiC structures are realized by combining the growth of nano- and microdiamonds on silicon carbide (3C or 4H polytype) substrates, with the subsequent use of these diamond crystals as a hard mask for pattern transfer. SiV(-) color centers are incorporated in diamond during its synthesis from molecular diamond seeds (diamondoids), with no need for ion-implantation or annealing. We show that the same growth technique can be used to grow a diamond layer controllably doped with SiV(-) on top of a high purity bulk diamond, in which we subsequently fabricate nanopillar arrays containing high quality SiV(-) centers. Scanning confocal photoluminescence measurements reveal optically active SiV(-) lines both at room temperature and low temperature (5 K) from all fabricated structures, and, in particular, very narrow line widths and small inhomogeneous broadening of SiV(-) lines from all-diamond nanopillar arrays, which is a critical requirement for quantum computation. At low temperatures (5 K) we observe in these structures the signature typical of SiV(-) centers in bulk diamond, consistent with a double lambda. These results indicate that high quality color centers can be incorporated into nanophotonic structures synthetically with properties equivalent to those in bulk diamond, thereby opening opportunities for applications in classical and quantum information processing.

19.
J Org Chem ; 80(12): 6520-4, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-26011255

RESUMO

Disproving a long C-C-bond textbook example: The reported 1.643 Å C-C bond in 5-cyano-1,3-dehydroadamantane was redetermined and "only" amounts to 1.584 Å. While this value is well reproduced with ab initio methods, some common DFT approaches perform poorly and are only consistent with CCSD(T)/cc-pVTZ optimizations for noninverted carbons. Large deviations from experiment were also found for other molecules with atypical electron density distributions, e.g., cubane, bicyclo[2.2.0]hexane, and bicyclo[2.1.0]- and bicyclo[1.1.1]pentane, thereby presenting challenging structures for some DFT implementations.

20.
J Am Chem Soc ; 137(20): 6577-86, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-25914113

RESUMO

Nanometer-sized doubly bonded diamondoid dimers and trimers, which may be viewed as models of diamond with surface sp(2)-defects, were prepared from corresponding ketones via a McMurry coupling and were characterized by spectroscopic and crystallographic methods. The neutral hydrocarbons and their radical cations were studied utilizing density functional theory (DFT) and ab initio (MP2) methods, which reproduce the experimental geometries and ionization potentials well. The van der Waals complexes of the oligomers with their radical cations that are models for the self-assembly of diamondoids, form highly delocalized and symmetric electron-deficient structures. This implies a rather high degree of σ-delocalization within the hydrocarbons, not too dissimilar to delocalized π-systems. As a consequence, sp(2)-defects are thus also expected to be nonlocal, thereby leading to the observed high surface charge mobilities of diamond-like materials. In order to be able to use the diamondoid oligomers for subsequent surface attachment and modification, their C-H-bond functionalizations were studied, and these provided halogen and hydroxy derivatives with conservation of unsaturation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...