Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1347422, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476944

RESUMO

Metaorganism research contributes substantially to our understanding of the interaction between microbes and their hosts, as well as their co-evolution. Most research is currently focused on the bacterial community, while archaea often remain at the sidelines of metaorganism-related research. Here, we describe the archaeome of a total of eleven classical and emerging multicellular model organisms across the phylogenetic tree of life. To determine the microbial community composition of each host, we utilized a combination of archaea and bacteria-specific 16S rRNA gene amplicons. Members of the two prokaryotic domains were described regarding their community composition, diversity, and richness in each multicellular host. Moreover, association with specific hosts and possible interaction partners between the bacterial and archaeal communities were determined for the marine models. Our data show that the archaeome in marine hosts predominantly consists of Nitrosopumilaceae and Nanoarchaeota, which represent keystone taxa among the porifera. The presence of an archaeome in the terrestrial hosts varies substantially. With respect to abundant archaeal taxa, they harbor a higher proportion of methanoarchaea over the aquatic environment. We find that the archaeal community is much less diverse than its bacterial counterpart. Archaeal amplicon sequence variants are usually host-specific, suggesting adaptation through co-evolution with the host. While bacterial richness was higher in the aquatic than the terrestrial hosts, a significant difference in diversity and richness between these groups could not be observed in the archaeal dataset. Our data show a large proportion of unclassifiable archaeal taxa, highlighting the need for improved cultivation efforts and expanded databases.

2.
Foods ; 11(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36076837

RESUMO

Escherichia coli is a highly versatile bacterium ranging from commensal to intestinal pathogen, and is an important foodborne pathogen. E. coli species are able to prosper in multispecies biofilms and secrete bacteriocins that are only toxic to species/strains closely related to the producer strain. In this study, 20 distinct E. coli strains were characterized for several properties that confer competitive advantages against closer microorganisms by assessing the biofilm-forming capacity, the production of antimicrobial molecules, and the production of siderophores. Furthermore, primer sets for E. coli bacteriocins-colicins were designed and genes were amplified, allowing us to observe that colicins were widely distributed among the pathogenic E. coli strains. Their production in the planktonic phase or single-species biofilms was uncommon. Only two E. coli strains out of nine biofilm-forming were able to inhibit the growth of other E. coli strains. There is evidence of larger amounts of colicin being produced in the late stages of E. coli biofilm growth. The decrease in bacterial biomass after 12 h of incubation indicates active type I colicin production, whose release normally requires E. coli cell lysis. Almost all E. coli strains were siderophore-producing, which may be related to the resistance to colicin as these two molecules may use the same transporter system. Moreover, E. coli CECT 504 was able to coexist with Salmonella enterica in dual-species biofilms, but Shigella dysenteriae was selectively excluded, correlating with high expression levels of colicin (E, B, and M) genes observed by real-time PCR.

3.
Arch Microbiol ; 204(9): 546, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35939214

RESUMO

Two bacterial strains, KH365_2T and KH569_7, were isolated from the cecum contents of wild-derived house mice. The strains were characterized as Gram-negative, rod-shaped, strictly anaerobic, and non-motile. Phylogenetic analysis based on 16S rRNA gene sequences revealed that both strains were most closely related to Bacteroides uniformis ATCC 8492T. Whole genome sequences of KH365_2T and KH569_7 strains have a DNA G + C content of 46.02% and 46.03% mol, respectively. Most morphological and biochemical characteristics did not differ between the newly isolated strains and classified Bacteroides strains. However, the average nucleotide identity (ANI) and dDNA-DNA hybridization (dDDH) values clearly distinguished the two strains from described members of the genus Bacteroides. Here, we present the phylogeny, morphology, and physiology of a novel species of the genus Bacteroides and propose the name Bacteroides muris sp. nov., with KH365_2T (DSM 114231T = CCUG 76277T) as type strain.


Assuntos
Bacteroides , Gastrópodes , Animais , Técnicas de Tipagem Bacteriana , Bacteroides/genética , Ceco/microbiologia , DNA Bacteriano/química , DNA Bacteriano/genética , Ácidos Graxos/análise , Camundongos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
4.
Elife ; 112022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35866635

RESUMO

Determining the forces that shape diversity in host-associated bacterial communities is critical to understanding the evolution and maintenance of metaorganisms. To gain deeper understanding of the role of host genetics in shaping gut microbial traits, we employed a powerful genetic mapping approach using inbred lines derived from the hybrid zone of two incipient house mouse species. Furthermore, we uniquely performed our analysis on microbial traits measured at the gut mucosal interface, which is in more direct contact with host cells and the immune system. Several mucosa-associated bacterial taxa have high heritability estimates, and interestingly, 16S rRNA transcript-based heritability estimates are positively correlated with cospeciation rate estimates. Genome-wide association mapping identifies 428 loci influencing 120 taxa, with narrow genomic intervals pinpointing promising candidate genes and pathways. Importantly, we identified an enrichment of candidate genes associated with several human diseases, including inflammatory bowel disease, and functional categories including innate immunity and G-protein-coupled receptors. These results highlight key features of the genetic architecture of mammalian host-microbe interactions and how they diverge as new species form.


The digestive system, particularly the large intestine, hosts many types of bacteria which together form the gut microbiome. The exact makeup of different bacterial species is specific to an individual, but microbiomes are often more similar between related individuals, and more generally, across related species. Whether this is because individuals share similar environments or similar genetic backgrounds remains unclear. These two factors can be disentangled by breeding different animal lineages ­ which have different genetic backgrounds while belonging to the same species ­ and then raising the progeny in the same environment. To investigate this question, Doms et al. studied the genes and microbiomes of mice resulting from breeding strains from multiple locations in a natural hybrid zone between different subspecies. The experiments showed that 428 genetic regions affected the makeup of the microbiome, many of which were known to be associated with human diseases. Further analysis revealed 79 genes that were particularly interesting, as they were involved in recognition and communication with bacteria. These results show how the influence of the host genome on microbiome composition becomes more specialized as animals evolve. Overall, the work by Doms et al. helps to pinpoint the genes that impact the microbiome; this knowledge could be helpful to examine how these interactions contribute to the emergence of conditions such as diabetes or inflammatory bowel disease, which are linked to perturbations in gut bacteria.


Assuntos
Microbioma Gastrointestinal , Interações entre Hospedeiro e Microrganismos , Animais , Bactérias/genética , Microbioma Gastrointestinal/genética , Estudo de Associação Genômica Ampla , Interações entre Hospedeiro e Microrganismos/genética , Camundongos , Mucosa , RNA Ribossômico 16S/genética
5.
Yeast ; 28(1): 55-61, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20824890

RESUMO

Chromosomal DNA damage can be a result of several processes and agents of endogenous or exogenous origin. These cause strand breaks or oxidized bases that lead to strand breaks, which relax the normally supercoiled genomic DNA and increase its electrophoretic mobility. The extent of DNA damage can be assessed by single cell gel electrophoresis, where the chromosomal DNA migration distance correlates with the extent of DNA damage. This technique has been used for a variety of applications with several organisms, but only a few studies have been reported for Saccharomyces cerevisiae. A possible reason for this absence is that low cellular DNA content could hamper visualization. Here we report an optimization of the comet assay protocol for yeast cells that is robust and sensitive enough to reproducibly detect background DNA damage and oxidative damage caused by hydrogen peroxide. DNA repair was observed and quantified as diminishing comet tail length with time after oxidative stress removal in a process well described by first-order kinetics with a tail length half-life of 11 min at 37 °C. This is, to our knowledge, the first quantitative measurement of DNA repair kinetics in S. cerevisiae by this method. We also show that diet antioxidants protect from DNA damage, as shown by a three-fold decrease in comet tail length. The possibility of assessment of DNA damage and repair in individual cells applied to the model organism S. cerevisiae creates new perspectives for studying genotoxicity and DNA repair.


Assuntos
Ensaio Cometa/métodos , Dano ao DNA , Reparo do DNA , DNA Fúngico/metabolismo , Peróxido de Hidrogênio/metabolismo , Antioxidantes/metabolismo , Meia-Vida , Cinética , Oxirredução , Estresse Oxidativo , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...