Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
ACS Omega ; 8(14): 12664-12670, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37065074

RESUMO

Studies were performed to investigate the effects of surface water quality parameters on the degradation of microcystin-LR (MC-LR) using high-energy electron beam (eBeam) technology. Surface water samples were collected across different geographic locations in the United States. Water quality parameters including pH, alkalinity, TDS, and dissolved oxygen were measured in all samples. Degradation of MC-LR in all samples, regardless of parameter concentrations, was above 99%. The effect of natural organic matter (NOM) on MC-LR degradation was also investigated in the presence of fulvic acid. Similarly, the degradation efficiency of MC-LR exceeded 99% for all concentrations of fulvic acid at 5 kGy. This study suggests that surface water quality has a negligible effect on the degradation of MC-LR via eBeam treatment. The results indicate that eBeam technology is a promising technique for the treatment of water contaminated with microcystins.

2.
Artigo em Inglês | MEDLINE | ID: mdl-34040287

RESUMO

Harmful cyanobacterial blooms (cyanoHABs) pose threats to human and animal health due to the production of harmful cyanotoxins. Microcystis aeruginosa is a common cyanobacterium associated with these blooms and is responsible for producing the potent cyclic hepatotoxin microcystin-LR (MC-LR). Concerns over the public health implications of these toxins in water supplies have increased due to rising occurrence of these blooms. High energy electron beam (eBeam) irradiation technology presents a promising strategy for the mitigation of both cyanobacterial cells and cyanotoxins within the water treatment process. However, it is imperative that both cellular and chemical responses to eBeam irradiation are understood to ensure efficient treatment. We sought to investigate the effect of eBeam irradiation on M. aeruginosa cells and MC-LR degradation. Results indicate that doses as low as 2 kGy are lethal to M. aeruginosa cells and induce cell lysis. Even lower doses are required for degradation of the parent MC-LR toxin. However, it was observed that there is a delay in cell lysis after irradiation where M. aeruginosa cells may still be metabolically active and able to synthesize microcystin. These results suggest that eBeam may be suitable for cyanoHAB mitigation in water treatment if employed following cell lysis.

3.
iScience ; 23(11): 101714, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33196031

RESUMO

Microbial communities display behavioral changes in response to variable environmental conditions. In some bacteria, motility increases as a function of cell density, allowing for population dispersal before the onset of nutrient scarcity. Utilizing automated particle tracking, we now report on a population-dependent increase in the swimming speeds of the photosynthetic unicellular eukaryotes Chlamydomonas reinhardtii and C. moewussi. Our findings confirm that this acceleration in swimming speed arises as a function of culture density, rather than with age and/or nutrient availability. Furthermore, this phenomenon depends on the synthesis and detection of a low-molecular-weight compound which can be transferred between cultures and stimulates comparable effects across both species, supporting the existence of a conserved phenomenon, not unlike bacterial quorum sensing, among members of this genus. The potential expansion of density-dependent phenomena to a new group of unicellular eukaryotes provides important insight into how microbial populations evolve and regulate "social" behaviors.

4.
Artigo em Inglês | MEDLINE | ID: mdl-34035564

RESUMO

Harmful algal and cyanobacterial blooms pose threats to human and ecological health due to their release of hazardous toxins. Microcystin-LR (MC-LR), a potent hepatotoxin, is the most prevalent cyanotoxin found in freshwater blooms. Although produced by many species of cyanobacteria, Microcystis aeruginosa is most commonly associated with MC-LR production. These blooms are increasing in occurrence in lakes, ponds, and other surface waters and, therefore, require efficient treatment methods to be removed from water supplies. Ionizing radiation technologies offer promising approaches for the removal of organic pollutants in water, including cyanotoxins and cyanobacteria. Gamma irradiation for the degradation of cyano-bacteria and toxins is effective for overall MC-LR degradation as well as reducing cell concentrations. However, gamma irradiation technology involves use of radioactive isotopes and, therefore, may not feasible commercially from a security perspective. Electron beam (eBeam) irradiation technology, which relies on regular electricity to generate highly energetic electrons, is able to achieve the same results without the confounding challenges of radioactive isotopes and related security issues. In this critical review, the current state of the science concerning the remediation of MC-LR and M. aeruginosa with ionizing radiation technologies is presented and future necessary research is discussed.

5.
Front Plant Sci ; 10: 1616, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32076424

RESUMO

The green algae Chlamydomonas reinhardtii is a model system for motility in unicellular organisms. Photo-, gravi-, and chemotaxis have previously been associated with C. reinhardtii, and observing the extent of these responses within a population of cells is crucial for refining our understanding of how this organism responds to changing environmental conditions. However, manually tracking and modeling a statistically viable number of samples of these microorganisms is an unreasonable task. We hypothesized that automated particle tracking systems are now sufficiently advanced to effectively characterize such populations. Here, we present an automated method to observe C. reinhardtii motility that allows us to identify individual cells as well as global information on direction, speed, and size. Nutrient availability effects on wild-type C. reinhardtii swimming speeds, as well as changes in speed and directionality in response to light, were characterized using this method. We also provide for the first time the swimming speeds of several motility-deficient mutant lines. While our present effort is focused around the unicellular green algae, C. reinhardtii, we confirm the general utility of this approach using Chlamydomonas moewusii, another member of this genus which contains over 300 species. Our work provides new tools for evaluating and modeling motility in this model organism and establishes the methodology for conducting similar experiments on other unicellular microorganisms.

6.
Biota Neotrop. (Online, Ed. ingl.) ; 16(1): e20150090, Jan.-Mar. 2016. tab, graf
Artigo em Inglês | LILACS | ID: biblio-951072

RESUMO

The reliability of using the abundance of Sporormiella spores as a proxy for the presence and abundance of megaherbivores was tested in southern Brazil. Mud-water interface samples from nine lakes, in which cattle-use was categorized as high, medium, or low, were assayed for Sporormiella representation. The sampling design allowed an analysis of both the influence of the number of animals using the shoreline and the distance of the sampling site from the nearest shoreline. Sporormiella was found to be a reliable proxy for the presence of large livestock. The concentration and abundance of spores declined from the edge of the lake toward the center, with the strongest response being in sites with high livestock use. Consistent with prior studies in temperate regions, we find that Sporormiella spores are a useful proxy to study the extinction of Pleistocene megafauna or the arrival of European livestock in Neotropical landscapes.


A confiabilidade dos valores de Sporormiella como um proxy para estimar a presença e abundância de megaherbívoros foi testada na região sudeste do Brasil. Amostras superficiais de nove lagos, categorizados quanto a presença de gados em alto, médio e baixo uso do seu entorno foram coletadas para a análise de abundância de Sporormiella. O modelo amostral aplicado permitiu a interpretação tanto da influência do número de animais que usam a margem do lago quanto a distância da margem do lago sobre a quantidade de esporos encontrados. As análises indicam que esporos de Sporormiella é um excelente proxy para detectar a presença de grandes herbívoros. A concentração e abundância de esporos reduz em direção ao centro do lago, o que fica mais evidente em locais com alto uso do entorno do lago por esses animais. Consistente com estudos realizados em regiões temperadas, nós concluímos que o uso de Sporormiella se mostra de grande valia para entender a extinção da megafauna do Pleistoceno como também a introdução de animais nas paisagens neotropicais.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...