Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(14): 21291-21301, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383932

RESUMO

In this work, iron-bearing mining reject was employed as an alternative and potential low-cost catalyst to degrade phenol in water by photo-Fenton strategy. Various techniques, including SEM-EDS, BET, FTIR, and XRD, were applied to evaluate the material's properties. Process parameters such as hydrogen peroxide concentration, catalyst dosage, and pH were studied to determine the optimum reaction conditions ([catalyst] = 0.75 g L-1, [H2O2] = 7.5 mM, and pH = 3). Phenol degradation and mineralization efficiencies at 180 and 300 min were 96.5 and 78%, respectively. These satisfactory results can be associated with the iron amount present in the waste sample. Furthermore, the material showed high catalytic activity and negligible iron leaching even after the fourth reuse cycle. The degradation behavior of phenol in water was well represented by a kinetic model based on the Fermi function. The iron-bearing mining reject can be considered a potential photo-Fenton catalyst for phenol degradation in wastewater.

2.
Environ Sci Pollut Res Int ; 30(57): 120763-120774, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37943438

RESUMO

In this study, coal bottom ash from a thermoelectric plant was tested as an alternative Fenton catalyst for phenol degradation in water. The effect of operating parameters such as initial pH, catalyst dosage and H2O2 concentration were evaluated. The characterization results indicated that the material has a mesoporous structure, with active species (Fe) well distributed on its surface. Under the optimal reaction conditions (6 mM H2O2, 1 g L-1 of catalyst and pH = 3), 98.7% phenol degradation efficiency was achieved in 60 min, as well as 71.6% TOC removal after 150 min. Hydroxyl radical was identified as the main oxidizing agent involved on the cleavage of the phenol molecule. After four consecutive reuse cycles, phenol degradation efficiency was around 80%, indicating good reusability and stability of the catalyst. Therefore, the obtained results demonstrated that the bottom ash presents remarkable activity for application in the Fenton reaction towards phenol degradation.


Assuntos
Cinza de Carvão , Fenol , Fenol/química , Peróxido de Hidrogênio/química , Oxirredução , Fenóis , Água , Catálise
3.
Environ Sci Pollut Res Int ; 30(55): 117390-117403, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37870670

RESUMO

For the first time, cadmium oxide (CdO) nanofibers (NFs) and graphene nanosheet (GNS)-doped CdO nanocomposites (NCs) have been synthesized by a simple green route using green tea (Camellia sinensis) extract, for subsequent application as photocatalysts for methylene blue (MB) removal from an aqueous matrix. In addition, the materials were tested as working electrodes for supercapacitors. The prepared samples were analyzed by FESEM, UV-Vis spectroscopy, FTIR, and X-ray diffraction (XRD). FESEM revealed that the obtained NPs and NCs show fiber-shaped nanostructure. FTIR confirmed the presence of biomolecules on CdO and carbon compounds on CdO/GNS, while XRD exhibited the cubic crystalline structure of obtained NPs and NCs. The Rietveld refinement using XRD data was performed to ascertain the crystallographic characteristics of the produced samples and look into lattice imperfections. UV-Vis spectroscopy evaluated the optical bandgap energies of CdO and CdO/GNS NCs. The CdO/GNS NCs demonstrated a fast cleavage of the dye molecule under UV irradiation, resulting in 97% removal in 120 min. In addition, CdO/GNS NCs showed remarkable chemical stability as an electrode material, with a high specific capacitance of 231 F g-1 at a scan rate of 25 mV s-1. These observed NCs characteristics are higher when compared to pristine CdO NPs. Finally, we found that the investigated NCs showed enhanced multifunctional properties, such as photocatalytic and supercapacitor characteristics, which can be useful in practical applications.


Assuntos
Grafite , Nanocompostos , Nanofibras , Azul de Metileno/química , Água , Nanocompostos/química
4.
Environ Sci Pollut Res Int ; 30(47): 104056-104066, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37698796

RESUMO

In this work, a novel support for an iron-based catalyst was prepared and employed for Ponceau 4R degradation by photo-Fenton reaction. To this, poultry waste was used for producing char, which was subsequently used to prepare the Fe2O3/Char composite. Process parameters, including catalyst dosage, pH, and hydrogen peroxide concentration, were investigated. The characterization analysis indicated that the textural properties of the composite were improved after impregnation with Fe2O3. The composite exhibited excellent catalytic activity, achieving a decolorization efficiency of 97% at 45 min and 81.06% organic carbon removal at 300 min. In addition, the material showed acceptable performance after four consecutive cycles. Furthermore, a scavenger test was performed to investigate the major reactive species involved in the Ponceau 4R oxidation, and a plausible mechanism for the respective reaction was projected. Therefore, the results of this research demonstrate that this material can be used as a potential catalyst for the abatement of dyed molecules from wastewater.


Assuntos
Corantes , Poluentes Ambientais , Animais , Matadouros , Aves Domésticas , Oxirredução , Peróxido de Hidrogênio/química , Catálise
5.
Environ Sci Pollut Res Int ; 30(30): 75078-75088, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37213008

RESUMO

In this work, CoFe2O4/TiO2 nanostructure was prepared through a facile and effective solvothermal route for efficient use in the degradation of the Erionyl Red A-3G model pollutant under ultraviolet irradiation. Characterization analysis indicated the successful heterojunction among the precursors. The composite presented band gap value of 2.75 eV, being smaller than that of the pristine TiO2, as well as mesoporous structure. The catalytic activity of nanostructure was investigated by employing a 22 factorial experimental design with 3 central points. The optimized reaction conditions were set as pH = 2 and catalyst dosage = 1.0 g L-1 for an initial pollutant concentration of 20 mg L-1. The prepared nanohybrid presented remarkable catalytic activity, reaching color removal efficiency of 95.39% after 15 min, as well as total organic carbon (TOC) removal of 69.4% after 120 min. The kinetic studies of TOC removal followed the pseudo-first order model, with a rate constant of 0.10 min-1. Moreover, the nanostructure presented magnetic behavior, being easily separated from the aqueous medium through the use of a simple external magnetic field.


Assuntos
Poluentes Ambientais , Raios Ultravioleta , Cinética , Titânio/química , Catálise
6.
Environ Sci Pollut Res Int ; 30(22): 62832-62846, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36947375

RESUMO

In this work, TiO2-based nanocomposites containing polyaniline (PANI), poly(1-naphthylamine) (PNA), and polyindole (PIN) were synthesized by effective and simple routes and posteriorly employed as photocatalysts and supercapacitors. Characterization techniques such as XRD, FTIR, FESEM, UV, and PL were employed to investigate the structural, morphological, and optical properties of materials. XRD analysis confirmed the successful formation of TiO2 and TiO2/polymer nanocomposites. PANI, PNA, and PIN polymers were well distributed on the surface of TiO2 nanoparticles and were investigated/explored from the FESEM analysis. The visible light absorption and the recombination rate of photogenerated charge carriers were confirmed by the UV-Vis and PL analysis. The photocatalytic properties of the nanocomposites were investigated towards malachite green (MG) dye degradation under sunlight. The dye degradation efficiency followed the order TiO2/PNA > TiO2/PANI > TiO2 > TiO2/PIN. The higher efficiency of TiO2/PNA can be associated with its smaller bandgap energy compared to the other materials. Electrochemical properties of materials were also examined by cyclic voltammetry and galvanostatic charge-discharge measurements using a three-electrode experiment setup in an aqueous electrolyte. TiO2/PNA nanocomposite showed higher supercapacitor behavior compared to the other materials due to higher electrical conductivity of PNA and redox potential of TiO2 (pseudocapacitance).


Assuntos
Poluentes Ambientais , Nanocompostos , Luz Solar , Polímeros , Luz , Titânio/química , Catálise , Nanocompostos/química
7.
Micromachines (Basel) ; 13(9)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36144151

RESUMO

Herein, we explore the supercapacitor and photocatalytic applications of poly(1-naphthylamine) (PNA) nanoparticles. The PNA nanoparticles were synthesized by using polymerization of 1-naphthylamine and characterized with several techniques in order to understand the morphological, structural, optical and compositional properties. The structural and morphological properties confirmed the formation of crystalline nanoparticles of PNA. The Fourier-transform infrared (FTIR) spectrum revealed the successful polymerization of 1-naphthylamine monomer to PNA. The absorption peaks that appeared at 236 and 309 nm in the UV−Vis spectrum for PNA nanoparticles represented the π−π* transition. The supercapacitor properties of the prepared PNA nanoparticles were evaluated with cyclic voltammetry (CV) and galvanostatic charge−discharge (GCD) methods at different scan rates and current densities, respectively. The effective series resistance was calculated using electrochemical impedance spectroscopy (EIS), resulting in a minimum resistance value of 1.5 Ω. The highest specific capacitance value of PNA was found to be 255 Fg−1. This electrode also exhibited excellent stability with >93% capacitance retention for 1000 cycles, as measured at 1A g−1. Further, the prepared PNA nanoparticles were used as an effective photocatalyst for the photocatalytic degradation of methylene blue (MB) dye, which exhibited ~61% degradation under UV light irradiation. The observed results revealed that PNA nanoparticles are not only a potential electrode material for supercapacitor applications but also an efficient photocatalyst for the photocatalytic degradation of hazardous and toxic organic dyes.

8.
Environ Sci Pollut Res Int ; 29(38): 57330-57344, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35349064

RESUMO

In this work, Ag-doped ZnO nanoparticles (NPs) were synthesized by a simple green method using a toxic agent-free route for photocatalytic purposes, toward methylene blue (MB) removal in water under sunlight irradiation. The effects of operating parameters, such as catalyst dosage, dye concentration, and pH, on the MB removal efficiency, were investigated. The presence of Ag on the ZnO structure resulted in superior catalytic activity compared to the pure ZnO sample. High removal efficiency for MB, corresponding to 95%, was obtained in 30 min of reaction time only, using Ag-doped ZnO NPs. This result can be related to its smaller bandgap energy (1.92 eV) when compared to the ZnO sample (2.85 eV). The material presented a satisfactory level of reusability after three consecutive cycles. In addition, a reaction mechanism for MB photodegradation onto Ag-doped ZnO NPs under sunlight irradiation was suggested. Overall, the catalyst prepared via the green route in this work exhibited excellent photocatalytic activity under sunlight for MB degradation in an aqueous solution.


Assuntos
Poluentes Ambientais , Prata/química , Óxido de Zinco , Catálise , Nanopartículas Metálicas , Azul de Metileno/química , Fotoquímica , Fotólise , Luz Solar , Água , Óxido de Zinco/química
9.
Environ Sci Pollut Res Int ; 29(26): 39754-39767, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35112257

RESUMO

Pharmaceutical compounds are a serious problem in the environment. They cause damage to the aquatic, animal, and human organisms and soon became considered emerging pollutants where their removal is extremely urgent. Among the techniques used, adsorption has been used with success, where several adsorbent materials, including those from residual biomass, have been used to remove these pollutants. In this study, the skins of the pitaya fruit (Hylocereus undatus) productive chain were carbonized with ZnCl2 to obtain activated carbon and later used in the adsorption of the drug naproxen (NPX) in a batch system. The Freundlich model demonstrated a better adjustment for the equilibrium isotherms. A high adsorption capacity for NPX (158.81 mg g-1) was obtained at 328 K, which can be attributed to the remarkable textural properties of the adsorbent, besides certain functional groups present on its surface. Thermodynamic studies confirmed the endothermic nature of the adsorption process (∆H0 = 0.2898 kJ mol-1). The linear driving force model (LDF) presented a good statistical adjustment to the experimental kinetic data. The application of the material in the treatment of simulated wastewater composed of various pharmaceutical drugs and salts was very promising, reaching 75.7% removal. Therefore, it can be inferred that the application of activated carbon derived from pitaya bark is highly promising in removing the NPX drug and treating synthetic mixtures containing other pharmaceutical substances.


Assuntos
Naproxeno , Poluentes Químicos da Água , Adsorção , Animais , Carvão Vegetal , Frutas/química , Concentração de Íons de Hidrogênio , Cinética , Preparações Farmacêuticas , Termodinâmica , Água , Poluentes Químicos da Água/análise
10.
Environ Sci Pollut Res Int ; 29(3): 3672-3685, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34389956

RESUMO

In this work, a novel and effective hydrochar was prepared by hydrothermal treatment of Prunus serrulata bark to remove the pesticide atrazine in river waters. The hydrothermal treatment has generated hydrochar with a rough surface and small cavities, favoring the atrazine adsorption. The adsorption equilibrium time was not influenced by different atrazine concentrations used, being reached after 240 min. The Elovich adsorption kinetic model presented the best adjustment to the kinetic data. The Langmuir model presented the greatest compliance to the isotherm data and indicated a higher affinity between atrazine and hydrochar, reaching a maximum adsorption capacity of 63.35 mg g-1. Thermodynamic parameters showed that the adsorption process was highly spontaneous, endothermic, and favorable, with a predominance of physical attraction forces. In treating three real river samples containing atrazine, the adsorbent showed high removal efficiency, being above 70 %. The hydrochar from Prunus serrulata bark waste proved highly viable to remove atrazine from river waters due to its high efficiency and low precursor material cost.


Assuntos
Atrazina , Herbicidas , Prunus , Poluentes Químicos da Água , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Casca de Planta/química , Rios , Poluentes Químicos da Água/análise
11.
Environ Sci Pollut Res Int ; 29(15): 21860-21875, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34773238

RESUMO

Schizolobium parahyba species can be found in all of South America, producing several residues that can be a major opportunity to develop activated carbon. This work presents the investigation regarding the development of a high specific surface activated carbon (981.55 m2 g-1) and its application in the adsorption of ketoprofen from the aqueous media. The ketoprofen molecules were better adhered to the adsorbent surface under acidic conditions (pH = 2), being the ideal adsorbent dosage determined as 0.7 g L-1, resulting in satisfactory values. It was found that the system reached equilibrium in 200 to 250 min depending on the initial concentration studied, achieving an adsorption capacity of 229 mg g-1. The general order was the most suitable model for describing the experimental data, with an R2 ≥ 0.9985 and MSR ≤ 63.40 (mg g-1)2. The equilibrium adsorption found that the temperature increases the adsorption capacity, achieving 447.35 mg g-1 at 328 K. Besides that, the Tóth model was the most suitable for describing the isotherms R2 ≥ 0.9990 and MSR ≤ 25.67 (mg g-1)2, indicating a heterogeneous adsorbent. The thermodynamic values found that the adsorption of ketoprofen is spontaneous (average ΔG0 of - 32.79 kJ mol-1) and endothermic (ΔH0 10.44 kJ mol-1). The treatment of simulated effluent with the developed adsorbent was efficient, removing 90% of ketoprofen, ibuprofen, and salts. It was found that the adsorbent is reaming its adsorption capacity up to the 5th cycle, progressively decreasing the adsorption capacity until the adsorption does not occur past the 12th cycle. Overall, the results demonstrated that the activated carbon from residual biomass of the Schizolobium parahyba species could be an excellent alternative in obtaining an effective adsorbent to treat wastewater-containing drugs.


Assuntos
Cetoprofeno , Poluentes Químicos da Água , Adsorção , Carvão Vegetal/química , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica , Poluentes Químicos da Água/análise
12.
Environ Sci Pollut Res Int ; 28(38): 52744-52763, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34467489

RESUMO

Produced water, a mixture of inorganic and organic components, comprises the largest effluent stream from oil and gas activities. The removal of contaminants from this wastewater is receiving special attention of the researchers since most of them are persistent and difficult to remove with simple techniques. Several technologies from conventional to advanced oxidation processes have been employed to treat produced water. However, the achievement of greater efficiency may be conditioned to a combination of different wastewater treatment techniques. Hereupon, the present paper discusses three important aspects regarding produced water treatment: analytical methods used for characterization, relevant aspects regarding photochemical systems used for advanced oxidation processes, and combined techniques for treating oil field wastewaters. Analytical methods employed for the quantification of the main species contained in produced water are presented for a proper characterization. Photochemical aspects of the reaction systems such as operating conditions, types of irradiation sources, and technical details of reactors are also addressed. Finally, research papers concerning combined treatment techniques are discussed focusing on the essential contributions. Thus, this manuscript aims to assist in the development of novel techniques and the improvement of produced water treatment to obtain a high-quality treated effluent and reduce environmental impacts.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Campos de Petróleo e Gás , Oxirredução , Eliminação de Resíduos Líquidos , Águas Residuárias/análise , Água , Poluentes Químicos da Água/análise
13.
Environ Sci Pollut Res Int ; 28(27): 36453-36463, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33694109

RESUMO

In this work, peanut (Arachis hypogaea) skin, a by-product generated by the agricultural production of its seeds, was employed as a precursor in the preparation of an adsorbent for the 2,4-D removal in water. The skins were treated with sulfuric acid and characterized by different techniques. The adsorption was favored at acid pH = 2 with pHpzc = 6. The dosage of 0.9 g L-1 was considered ideal, obtaining satisfactory indications of removal and capacity. The kinetic curves were well represented by the general order model, with the equilibrium reached quickly in the first 30 min for all concentrations. Adsorption isotherm studies showed that the increase in temperature negatively affected the herbicide adsorption, obtaining a maximum capacity of 246.72 mg g-1, by the Langmuir isotherm at 298 K. The remarkable adsorption efficiency presented by the adsorbent can be associated with the presence of new functional groups on the adsorbent surface generated after the acid treatment. Thermodynamic parameters confirmed the exothermic nature of the adsorptive system. In the treatment of synthetic wastewater consisting of a mixture of herbicides and salts, a high removal efficiency (72%) of herbicides was obtained. Therefore, the development of an adsorbent derived from peanut (Arachis hypogaea) skin treated with sulfuric acid is an excellent alternative, generating remarkable removal results towards 2,4-D herbicide.


Assuntos
Herbicidas , Poluentes Químicos da Água , Ácido 2,4-Diclorofenoxiacético , Adsorção , Arachis , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica
14.
Environ Sci Pollut Res Int ; 28(2): 2342-2354, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32885336

RESUMO

Two novel ecological and low-cost adsorbents were prepared from seed residues of the tree species Anadenanthera macrocarpa and Cedrela fissilis for the removal of methylene blue dye in water. The materials were comminuted and characterized by different techniques. The particles of samples have a rough surface with cavities. The optimum dosage and pH for both materials were 1 g L-1 and pH 8. The pseudo-second-order model was the most suitable for describing the adsorption kinetics for both systems. The Anadenanthera macrocarpa presented a maximum experimental capacity of 228 mg g-1, while the Cedrela fissilis, a similar capacity of 230 mg g-1 at 328 K. The Tóth model was proper for describing the equilibrium curves for both systems. The thermodynamic indicators show that the adsorption process is spontaneous and endothermic for both materials. The application of materials for the simulated effluent treatment showed 74 and 78% of color removal using Anadenanthera macrocarpa and Cedrela fissilis samples, respectively. Overall, seed residues of Anadenanthera macrocarpa and Cedrela fissilis could be potentially applied for adsorptive removal of colored contaminants in wastewater.


Assuntos
Cedrela , Poluentes Químicos da Água , Purificação da Água , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Azul de Metileno/análise , Sementes/química , Soluções , Termodinâmica , Água , Poluentes Químicos da Água/análise
15.
Sci Total Environ ; 753: 141981, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32911167

RESUMO

This review discusses the imminent threat that microplastics (MPs) associated with pharmaceuticals represent to the aquatic environment and public health. We initially focused upon recognizing and stressing that MPs are ubiquitous pollutants. The influence of environmental factors, such as pH, mechanical stress, and photodegradation, are examined, aiming to elucidate how both substances might associate, what are their simultaneous degradation pathways and, to understand the interactions between MPs and pharmaceuticals. Mathematical tools, such as modeling and simulations, are presented in detail, aiming to improve how information is interpreted. Furthermore, it is exhibited that MPs sorption and interaction behavior towards organic contaminants play an important role in understanding its dynamics in the environment, as well as their possible interactions with pharmaceuticals that are summarized. At last, MPs and pharmaceuticals toxicity and bioaccumulation are presented.


Assuntos
Preparações Farmacêuticas , Poluentes Químicos da Água , Adsorção , Microplásticos , Plásticos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
16.
Environ Sci Pollut Res Int ; 28(7): 8407-8420, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33058060

RESUMO

Pods of the forest species Caesalpinia echinata were used as an alternative adsorbent to remove bright blue (BB) and methylene blue (MB) dyes. The raw and acid-treated samples were characterized by techniques like SEM, XRD, and FTIR. The acid-treated pod sample was characterized by an amorphous structure containing several cavities, bumps, and functional groups. The Elovich model was the most satisfactory to describe the adsorption kinetic data. The isothermal studies were better described by the Langmuir model for BB dye, with a maximum capacity of 261 mg g-1, and Tóth model for MB dye, giving a maximum capacity of 288 mg g-1. The thermodynamic study indicated a spontaneous and favorable process and endothermic nature for both dyes. In the treatment of two simulated effluents containing a mixture of different compounds such as dyes and salts, to simulate real wastewaters, the adsorbent was highly efficient, presenting around 80% of color removal for both effluents. Therefore, the acid-treated pods of Caesalpinia echinata have great potential to be applied as an alternative adsorbents in treating colored effluents in discontinuous systems.


Assuntos
Caesalpinia , Poluentes Químicos da Água , Adsorção , Corantes , Concentração de Íons de Hidrogênio , Cinética , Azul de Metileno/análise , Termodinâmica , Poluentes Químicos da Água/análise
17.
Environ Sci Pollut Res Int ; 28(6): 6771-6783, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33009617

RESUMO

In this work, for the first time, Cordia trichotoma sawdust, a residue derived from noble wood processing, was applied as an alternative biosorbent for the removal of crystal violet by discontinuous and continuous biosorption processes. The optimum conditions for biosorption of crystal violet were 7.5 pH and a biosorbent dosage of 0.8 g L-1. The biosorption kinetics showed that the equilibrium was reached at 120 min, achieving a maximum biosorption capacity of 107 mg g-1 for initial dye concentration of 200 mg L-1. The Elovich model was the proper model for representing the biosorption kinetics. The isotherm assays showed that the rise of temperature causes an increase in the biosorption capacity of the crystal violet, with a maximum biosorption capacity of 129.77 mg g-1 at 328 K. The Langmuir model was the most proper model for describing the behavior. The sign of ΔG0 indicates that the process was spontaneous and favorable, whereas the ΔH0 indicates an endothermic process. The treatment of the colored simulated effluent composed by dyes and salts resulted in 80% of color removal. The application of biosorbent in the fixed-bed system achieved a breakthrough time of 505 min, resulting in 83.35% of color removal. The Thomas and Yoon-Nelson models were able to describe the fixed-bed biosorption behavior. This collection of experimental evidence shows that the Cordia trichotoma sawdust can be applied for the removal of crystal violet and a mixture of other dyes that contain them.


Assuntos
Cordia , Poluentes Químicos da Água , Adsorção , Violeta Genciana , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica , Poluentes Químicos da Água/análise , Madeira/química
18.
J Mech Behav Biomed Mater ; 98: 11-19, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31176090

RESUMO

This study assessed the fatigue performance (biaxial flexure fatigue strength), surface characteristics (topography and roughness) and structural stability (t-m phase transformation) of a Y-TZP ceramic subjected to air-abrasion using new powders (7% and 20% silica-coated aluminum oxide particles) in comparison to commercially available powders. Disc-shaped specimens were manufactured (ISO 6872-2015) and randomly allocated into four groups considering the air-abrasion materials: SiC: commercially available silica-coated aluminum oxide; AlOx: commercially available aluminum oxide; 7%Si and 20%Si: experimentally produced materials consisting of 7% and 20% silica-coated AlOx, respectively. Air-abrasion was executed by a blinded researcher (1 cm distance from the tip to the specimen surface, under 2.8 bar pressure for 10 s). The fatigue tests (n = 15) were performed by the staircase method under a piston-on-three-balls assembly. Topography and roughness assessments (n = 30) of abraded samples and fractography of failed discs were performed. The highest fatigue strength (MPa) was observed for 7%Si (887.20 ±â€¯50.54) and SiC (878.16 ±â€¯29.81), while the lowest fatigue strength for 20%Si (773.89 ±â€¯46.44) and AlOx (796.70 ±â€¯46.48). Topography analysis depicted similar surface morphology for all conditions. However, roughness (µm) was only statistically different between 7%Si (Ra = 0.30 ±â€¯0.09; Rz = 2.31 ±â€¯0.63) and SiC (Ra = 0.26 ±â€¯0.04; Rz = 1.99 ±â€¯0.34). Monoclinic phase grains appeared on Y-TZP surface in a similar content (≈11-12%) for the protocols. Fractography showed all failures starting on air-abraded surface/sub-surface defects from the tensile side. In terms of roughness, phase transformation and fatigue, the new 7% silica-coated aluminum oxide presented similar behavior to the commercially available powder. Increasing silica-coating concentration to 20% did not lead to a gentle air-abrasion protocol.


Assuntos
Ar , Óxido de Alumínio/química , Cerâmica/química , Fenômenos Mecânicos , Dióxido de Silício/química , Ítrio/química , Zircônio/química , Pós
19.
Braz. j. oral sci ; 18: e190918, jan.-dez. 2019. ilus
Artigo em Inglês | LILACS, BBO - Odontologia | ID: biblio-1087410

RESUMO

Aim: This study evaluated the effect of surface treatments of yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) ceramics on their bond strength to a resin cement. Methods: Seventy zirconia blocks (6 × 6 × 2 mm3, IPS e.max ZirCAD) were assigned into 7 groups (n=10) ­ as-sintered (AS), no treatment; tribochemical silica coating + silanization (TBS; Cojet-sand; ProSil); airabrasion with 45 µm alumina particles + universal primer (AAP; Monobond®Plus); fusion sputtering (FS); SiO2 nanofilm + silanization (SN; ProSil); FS+SN+ silanization (FSSN; ProSil); FS+SN+Universal Primer (FSSNP; Monobond®Plus). Afterwards, a resin cement (RelyX™ ARC) was applied inside cylinders (Ø = 0.96 mm × 1 mm height) placed on the zirconia surfaces. Microshear bond strength tests (µSBS) were carried out (1 mm/min). Failure and phase transformation analysis were performed. Bond strength data (MPa) were subjected to Kruskal-Wallis/Mann Whitney tests. Results: TBS (27 ± 1.2) and AAP (24.7 ± 0.8) showed higher bond strengths than the other groups, followed by FSSNP (15.5 ± 4.2) and FSSN (13.3 ± 3.6). FS (3.4 ± 0.44) and SN (9.5 ± 2.7) showed the lowest values (p < 0.001). Most of the specimens exhibited an adhesive failure. Conclusion: Air-abrasion by silica-coated alumina particles followed by silanization or by alumina particles followed by universal primer resulted in the highest resin bond strength to zirconia. Fusion sputtering and silica nanofilm deposition induced low strengths. However, when these methods are applied in combination and with a primer (FSSN and FSSNP), higher bond strengths may be achieved. Low bond strengths are obtained when no zirconia treatment is performed


Assuntos
Ítrio , Cimentos de Resina , Cimentos Dentários , Resistência à Flexão
20.
Environ Sci Pollut Res Int ; 25(34): 34123-34130, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30284166

RESUMO

Bismuth vanadate (BiVO4) powders were successfully synthesized in presence of EDTA via microwave irradiation and used as photocatalysts in the oxidation reaction of rhodamine B (rhB) under visible light. Different concentrations of EDTA (0.5 to 10%) to chelate Bi3+ ions were employed on the BiVO4 synthesis. Under the presence of EDTA, a monoclinic crystalline structure was obtained, whereas a mixture of monoclinic and tetragonal phases was observed in the absence of EDTA. In addition, the use of different EDTA concentrations promoted the formation the different shapes of particles. The BiVO4 sample synthesized with low concentration of EDTA (0.5%) exhibited about 85% of rhB decolorization in 300 min at pH 7.5. Therefore, this high efficiency can be attributed to a combination of intrinsic properties such as the morphology type and monoclinic structure of BiVO4 particles.


Assuntos
Bismuto/química , Corantes/química , Ácido Edético/química , Rodaminas/química , Vanadatos/química , Catálise , Luz , Microscopia Eletrônica de Varredura , Micro-Ondas , Oxirredução , Pós , Soluções/química , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...