Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Signal ; 16(781): eabo2709, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37071733

RESUMO

Mucosal-associated invariant T (MAIT) cells are an abundant population of innate T cells that recognize bacterial ligands and play a key role in host protection against bacterial and viral pathogens. Upon activation, MAIT cells undergo proliferative expansion and increase their production of effector molecules such as cytokines. In this study, we found that both mRNA and protein abundance of the key metabolism regulator and transcription factor MYC was increased in stimulated MAIT cells. Using quantitative mass spectrometry, we identified the activation of two MYC-controlled metabolic pathways, amino acid transport and glycolysis, both of which were necessary for MAIT cell proliferation. Last, we showed that MAIT cells isolated from people with obesity showed decreased MYC mRNA abundance upon activation, which was associated with defective MAIT cell proliferation and functional responses. Collectively, our data uncover the importance of MYC-regulated metabolism for MAIT cell proliferation and provide additional insight into the molecular basis for the functional defects of MAIT cells in obesity.


Assuntos
Células T Invariantes Associadas à Mucosa , Humanos , Células T Invariantes Associadas à Mucosa/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Obesidade/metabolismo , Glicólise , Ativação Linfocitária , Proliferação de Células
2.
J Immunol ; 202(12): 3404-3411, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31076528

RESUMO

Obesity underpins the development of numerous chronic diseases, such as type II diabetes mellitus. It is well established that obesity negatively alters immune cell frequencies and functions. Mucosal-associated invariant T (MAIT) cells are a population of innate T cells, which we have previously reported are dysregulated in obesity, with altered circulating and adipose tissue frequencies and a reduction in their IFN-γ production, which is a critical effector function of MAIT cells in host defense. Hence, there is increased urgency to characterize the key molecular mechanisms that drive MAIT cell effector functions and to identify those which are impaired in the obesity setting. In this study, we found that MAIT cells significantly upregulate their rates of glycolysis upon activation in an mTORC1-dependent manner, and this is essential for MAIT cell IFN-γ production. Furthermore, we show that mTORC1 activation is dependent on amino acid transport via SLC7A5. In obese patients, using RNA sequencing, Seahorse analysis, and a series of in vitro experiments, we demonstrate that MAIT cells isolated from obese adults display defective glycolytic metabolism, mTORC1 signaling, and SLC7A5 aa transport. Collectively, our data detail the intrinsic metabolic pathways controlling MAIT cell cytokine production and highlight mTORC1 as an important metabolic regulator that is impaired in obesity, leading to altered MAIT cell responses.


Assuntos
Diabetes Mellitus Tipo 2/imunologia , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Células T Invariantes Associadas à Mucosa/fisiologia , Obesidade/imunologia , Adulto , Células Cultivadas , Feminino , Glicólise , Humanos , Interferon gama/metabolismo , Ativação Linfocitária , Masculino , Análise de Sequência de RNA , Transdução de Sinais
3.
Nat Immunol ; 19(12): 1330-1340, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30420624

RESUMO

Up to 49% of certain types of cancer are attributed to obesity, and potential mechanisms include overproduction of hormones, adipokines, and insulin. Cytotoxic immune cells, including natural killer (NK) cells and CD8+ T cells, are important in tumor surveillance, but little is known about the impact of obesity on immunosurveillance. Here, we show that obesity induces robust peroxisome proliferator-activated receptor (PPAR)-driven lipid accumulation in NK cells, causing complete 'paralysis' of their cellular metabolism and trafficking. Fatty acid administration, and PPARα and PPARδ (PPARα/δ) agonists, mimicked obesity and inhibited mechanistic target of rapamycin (mTOR)-mediated glycolysis. This prevented trafficking of the cytotoxic machinery to the NK cell-tumor synapse. Inhibiting PPARα/δ or blocking the transport of lipids into mitochondria reversed NK cell metabolic paralysis and restored cytotoxicity. In vivo, NK cells had blunted antitumor responses and failed to reduce tumor growth in obesity. Our results demonstrate that the lipotoxic obese environment impairs immunosurveillance and suggest that metabolic reprogramming of NK cells may improve cancer outcomes in obesity.


Assuntos
Vigilância Imunológica/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Melanoma Experimental/imunologia , Obesidade/imunologia , Adulto , Animais , Feminino , Humanos , Células Matadoras Naturais/patologia , Masculino , Melanoma Experimental/complicações , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Obesidade/complicações , Adulto Jovem
5.
BMC Genomics ; 16: 811, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26482908

RESUMO

BACKGROUND: The regulation of endometrial inflammation has important consequences for the resumption of bovine fertility postpartum. All cows experience bacterial influx into the uterus after calving; however a significant proportion fail to clear infection leading to the development of cytological endometritis (CE) and compromised fertility. We hypothesised that early immunological changes could not only act as potential prognostic biomarkers for the subsequent development of disease but also shed light on the pathogenesis of endometritis in the postpartum dairy cow. METHODS: Endometrial biopsy RNA was extracted from 15 cows at 7 and 21 days postpartum (DPP), using the Qiagen RNeasy(®) Plus Mini kit and quality determined using an Agilent 2100 bioanalyser. Disease status was determined by histpathology based on inflammatory cell infiltrate. RNA-seq of both mRNA and miRNA libraries were performed on an Illumina® HiSeq(™) 2000. Paired reads were aligned to the bovine genome with Bowtie2 and differentially expressed genes were identified using EdgeR. Significantly over-represented Gene Ontology terms were identified using GO-seq, and pathway analysis was performed using KEGG. Quanititative real-time PCR was also performed for validation (ABI 7500 fast). Haematology was assessed using an automated ADVIA 2120 analyser. Serum proteins were evaluated by ELISA and metabolite analysis was performed using a Beckman Coulter AU 400 clinical analyser. Terminal-restriction fragment length polymorphism (T-RFLP) was used to obtain fingerprints of the microbial communities present. RESULTS: Next-generation sequencing from endometrial biopsies taken at 7 DPP identified significant induction of inflammatory gene expression in all cows. Despite the common inflammatory profile and enrichment of the Toll-like receptor and NFκB pathways, 73 genes and 31 miRNAs were significantly differentially expressed between healthy cows (HC, n = 9) and cows which subsequently developed CE at 7 DPP (n = 6, FDR < 0.1). While significant differential expression of 4197 genes in the transcriptome of healthy cows between 7 and 21 DPP showed the transition from a proinflammatory to tissue profliferation and repair, only 31 genes were differentially expressed in cows with CE (FDR < 0.1), indicating the arrest of such a transition. A link betwene the dysregulated inflammatory response and the composition of the uterine microbial communities was suggested by the presence of significant differences in uterine bacterial tRFLP profiles between HC and CE groups. Furthermore, inflammatory activity was not confined to the uterus; decreased circulating granulocytes and increased Acute Phase Protein (SAA and HP) expression levels were detected in plasma at 7 DPP in cows that developed CE. CONCLUSION: Our data suggests that the IL1 and IL17 inflammatory cascade activated early postpartum is resolved thereby restoring homeostasis in healthy cows by 21 DPP, but this transition fails to occur in cows which develop CE. Despite a common early inflammatory profile, elevated and differential expression of specific immune genes may identify cows at risk of prolonged inflammation and the development of CE postpartum.


Assuntos
Doenças dos Bovinos/genética , Endometrite/genética , Inflamação/genética , RNA Mensageiro/genética , Animais , Bovinos , Doenças dos Bovinos/patologia , Endometrite/patologia , Endométrio/metabolismo , Endométrio/patologia , Feminino , Fertilidade/genética , Regulação da Expressão Gênica , Humanos , Inflamação/patologia , RNA Mensageiro/biossíntese
6.
Reprod Fertil Dev ; 24(8): 1028-39, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22948010

RESUMO

After calving, the bovine endometrium undergoes marked morphological and functional changes that are necessary for subsequent re-breeding. Regulation and integration of these key events are largely uncharacterised. Here, endometrial swabs and biopsies were taken at 15, 30 and 60 days postpartum (DPP) from 13 healthy primiparous cows, 10 of which subsequently conceived, with a view to characterising innate and inflammatory gene expression profiles. Endometrial biopsies exhibited severe inflammation (>75 leukocytes per high-power field) at 15 DPP, which had begun to resolve by 30 DPP and had completely resolved by 60 DPP. The severe inflammation at 15 DPP coincided with uterine infection in all cows and a significant increase (P < 0.05) in the expression of all of 16 genes investigated, including CD45, IL8, IL6, IL1, TNF, TAP, SAA3 and HP at 15 DPP, relative to 60 DPP. All of these parameters had begun to return to normal physiological levels at 30 DPP. Systemically, serum protein concentrations of IL-8 were elevated at 15 DPP compared with 60 DPP (78 pgmL(-1)vs 48 pgmL(-1); P = 0.02). These results indicate that endometrial inflammation, leukocyte infiltration and increased expression of pro-inflammatory, antimicrobial and acute-phase protein genes are expected features of the postpartum period, critical to bacterial clearance and uterine involution.


Assuntos
Doenças dos Bovinos/fisiopatologia , Endometrite/veterinária , Período Pós-Parto/fisiologia , Proteínas de Fase Aguda/genética , Animais , Anti-Infecciosos , Biópsia/veterinária , Bovinos , Citocinas/genética , Defensinas , Endometrite/genética , Endometrite/patologia , Feminino , Fertilidade/fisiologia , Expressão Gênica , Contagem de Leucócitos , Útero/microbiologia
7.
BMC Genomics ; 13: 489, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22985206

RESUMO

BACKGROUND: All cows experience bacterial contamination and tissue injury in the uterus postpartum, instigating a local inflammatory immune response. However mechanisms that control inflammation and achieve a physiologically functioning endometrium, while avoiding disease in the postpartum cow are not succinctly defined. This study aimed to identify novel candidate genes indicative of inflammation resolution during involution in healthy beef cows. Previous histological analysis of the endometrium revealed elevated inflammation 15 days postpartum (DPP) which was significantly decreased by 30 DPP. The current study generated a genome-wide transcriptomic profile of endometrial biopsies from these cows at both time points using mRNA-Seq. The pathway analysis tool GoSeq identified KEGG pathways enriched by significantly differentially expressed genes at both time points. Novel candidate genes associated with inflammatory resolution were subsequently validated in additional postpartum animals using quantitative real-time PCR (qRT-PCR). RESULTS: mRNA-Seq revealed 1,107 significantly differentially expressed genes, 73 of which were increased 15 DPP and 1,034 were increased 30 DPP. Early postpartum, enriched immune pathways (adjusted P < 0.1) included the T cell receptor signalling pathway, graft-versus-host disease and cytokine-cytokine receptor interaction pathways. However 30 DPP, where the majority of genes were differentially expressed, the enrichment (adjusted P < 0.1) of tissue repair and proliferative activity pathways was observed. Nineteen candidate genes selected from mRNA-Seq results, were independently assessed by qRT-PCR in additional postpartum cows (5 animals) at both time points. SAA1/2, GATA2, IGF1, SHC2, and SERPINA14 genes were significantly elevated 30 DPP and are functionally associated with tissue repair and the restoration of uterine homeostasis postpartum. CONCLUSIONS: The results of this study reveal an early activation of the immune response which undergoes a temporal functional change toward tissue proliferation and regeneration during endometrial involution in healthy postpartum cows. These molecular changes mirror the activation and resolution of endometrial inflammation during involution previously classified by the degree of neutrophil infiltration. SAA1/2, GATA2, IGF1, SHC2, and SERPINA14 genes may become potential markers for resolution of endometrial inflammation in the postpartum cow.


Assuntos
Doenças dos Bovinos/metabolismo , Endometrite/veterinária , Perfilação da Expressão Gênica/veterinária , Regulação da Expressão Gênica/genética , Transdução de Sinais/genética , Animais , Sequência de Bases , Bovinos , Doenças dos Bovinos/genética , Doenças dos Bovinos/imunologia , Primers do DNA/genética , Endometrite/genética , Endometrite/imunologia , Endometrite/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/imunologia , Sequenciamento de Nucleotídeos em Larga Escala , Dados de Sequência Molecular , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...