Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Enzymol ; 701: 83-122, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39025584

RESUMO

The lateral stress profile of a lipid bilayer constitutes a valuable link between molecular simulation and mesoscopic elastic theory. Even though it is frequently calculated in simulations, its statistical precision (or that of observables derived from it) is often left unspecified. This omission can be problematic, as uncertainties are prerequisite to assessing statistical significance. In this chapter, we provide a comprehensive yet accessible overview of the statistical error analysis for the lateral stress profile. We detail two relatively simple but powerful techniques for generating error bars: block-averaging and bootstrapping. Combining these methods allows us to reliably estimate uncertainties, even in the presence of both temporal and spatial correlations, which are ubiquitous in simulation data. We illustrate these techniques with simple examples like stress moments, but also more complex observables such as the location of stress profile extrema and the monolayer neutral surface.


Assuntos
Bicamadas Lipídicas , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Incerteza , Simulação de Dinâmica Molecular , Estresse Mecânico , Simulação por Computador , Elasticidade
2.
J Chem Phys ; 160(6)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38349623

RESUMO

Biological lipid membranes are generally asymmetric, not only with respect to the composition of the two membrane leaflets but also with respect to the state of mechanical stress on the two sides. Computer simulations of such asymmetric membranes pose unique challenges with respect to the choice of boundary conditions and ensemble in which such simulations are to be carried out. Here, we demonstrate an alternative to the usual choice of fully periodic boundary conditions: The membrane is only periodic in one direction, with free edges running parallel to the single direction of periodicity. In order to maintain bilayer asymmetry under these conditions, nanoscale "sticky tapes" are adhered to the membrane edges in order to prevent lipid flip-flop across the otherwise open edge. In such semi-periodic simulations, the bilayer is free to choose both its area and mean curvature, allowing for minimization of the bilayer elastic free energy. We implement these principles in a highly coarse-grained model and show how even the simplest examples of such simulations can reveal useful membrane elastic properties, such as the location of the monolayer neutral surface.

3.
Emerg Top Life Sci ; 7(1): 95-110, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36880567

RESUMO

Many cellular lipid bilayers consist of leaflets that differ in their lipid composition - a non-equilibrium state actively maintained by cellular sorting processes that counter passive lipid flip-flop. While this lipidomic aspect of membrane asymmetry has been known for half a century, its elastic and thermodynamic ramifications have garnered attention only fairly recently. Notably, the torque arising when lipids of different spontaneous curvature reside in the two leaflets can be counterbalanced by a difference in lateral mechanical stress between them. Such membranes can be essentially flat in their relaxed state, despite being compositionally strongly asymmetric, but they harbor a surprisingly large but macroscopically invisible differential stress. This hidden stress can affect a wide range of other membrane properties, such as the resistance to bending, the nature of phase transitions in its leaflets, and the distribution of flippable species, most notably sterols. In this short note we offer a concise overview of our recently proposed basic framework for capturing the interplay between curvature, lateral stress, leaflet phase behavior, and cholesterol distribution in generally asymmetric membranes, and how its implied signatures might be used to learn more about the hidden but physically consequential differential stress.


Assuntos
Bicamadas Lipídicas , Fitosteróis , Termodinâmica , Membranas , Colesterol
4.
Biophys J ; 121(16): 2997-3009, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35859420

RESUMO

A widely conserved property of many biological lipid bilayers is their asymmetry. In addition to having distinct compositions on its two sides, a membrane can also exhibit different tensions in its two leaflets, a state known as differential stress. Here, we examine how this stress can influence the phase behavior of the constituent lipid monolayers of a single-component membrane. For temperatures sufficiently close to, but still above, the main transition, molecular dynamics simulations show the emergence of finite gel domains within the compressed leaflet. We describe the thermodynamics of this phenomenon by adding two empirical single-leaflet free energies for the fluid-gel transition, each evaluated at its respective asymmetry-dependent lipid density. Finite size effects arising in simulation are included in the theory through a geometry-dependent interfacial term. Our model reproduces the phase coexistence observed in simulation. It could therefore be used to connect the "hidden variable" of differential stress to experimentally observable properties of the main phase transition. These ideas could be generalized to any first-order bilayer phase transition in the presence of asymmetry, including liquid-ordered/liquid-disordered phase separation.


Assuntos
Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Membranas , Transição de Fase , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...