Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 84(3): 1314-25, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19923189

RESUMO

Superinfection exclusion or homologous interference, a phenomenon in which a primary viral infection prevents a secondary infection with the same or closely related virus, has been observed commonly for viruses in various systems, including viruses of bacteria, plants, and animals. With plant viruses, homologous interference initially was used as a test of virus relatedness to define whether two virus isolates were "strains" of the same virus or represented different viruses, and subsequently purposeful infection with a mild isolate was implemented as a protective measure against isolates of the virus causing severe disease. In this study we examined superinfection exclusion of Citrus tristeza virus (CTV), a positive-sense RNA closterovirus. Thirteen naturally occurring isolates of CTV representing five different virus strains and a set of isolates originated from virus constructs engineered based on an infectious cDNA clone of T36 isolate of CTV, including hybrids containing sequences from different isolates, were examined for their ability to prevent superinfection by another isolate of the virus. We show that superinfection exclusion occurred only between isolates of the same strain and not between isolates of different strains. When isolates of the same strain were used for sequential plant inoculation, the primary infection provided complete exclusion of the challenge isolate, whereas isolates from heterologous strains appeared to have no effect on replication, movement or systemic infection by the challenge virus. Surprisingly, substitution of extended cognate sequences from isolates of the T68 or T30 strains into T36 did not confer the ability of resulting hybrid viruses to exclude superinfection by those donor strains. Overall, these results do not appear to be explained by mechanisms proposed previously for other viruses. Moreover, these observations bring an understanding of some previously unexplained fundamental features of CTV biology and, most importantly, build a foundation for the strategy of selecting mild isolates that would efficiently exclude severe virus isolates as a practical means to control CTV diseases.


Assuntos
Closterovirus/patogenicidade , Superinfecção , Closterovirus/classificação , Closterovirus/genética , DNA Complementar , DNA Viral , Ensaio de Imunoadsorção Enzimática , Genes Virais , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade da Espécie , Nicotiana/virologia
2.
J Virol ; 82(13): 6546-56, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18434397

RESUMO

Systemic invasion of plants by viruses is thought to involve two processes: cell-to-cell movement between adjacent cells and long-distance movement that allows the virus to rapidly move through sieve elements and unload at the growing parts of the plant. There is a continuum of proportions of these processes that determines the degrees of systemic infection of different plants by different viruses. We examined the systemic distribution of Citrus tristeza virus (CTV) in citrus species with a range of susceptibilities. By using a "pure" culture of CTV from a cDNA clone and green fluorescent protein-labeled virus we show that both cell-to-cell and long-distance movement are unusually limited, and the degree of limitation varies depending on the citrus host. In the more-susceptible hosts CTV infected only a small portion of phloem-associated cells, and moreover, the number of infection sites in less-susceptible citrus species was substantially decreased further, indicating that long-distance movement was reduced in those hosts. Analysis of infection foci in the two most differential citrus species, Citrus macrophylla and sour orange, revealed that in the more-susceptible host the infection foci were composed of a cluster of multiple cells, while in the less-susceptible host infection foci were usually single cells, suggesting that essentially no cell-to-cell movement occurred in the latter host. Thus, CTV in sour orange represents a pattern of systemic infection in which the virus appears to function with only the long-distance movement mechanism, yet is able to survive in nature.


Assuntos
Citrus/virologia , Closterovirus/fisiologia , Genoma Viral/genética , Folhas de Planta/ultraestrutura , Internalização do Vírus , Closterovirus/genética , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Microscopia Eletrônica de Transmissão , Folhas de Planta/virologia , Especificidade da Espécie
3.
Virology ; 368(1): 205-16, 2007 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-17651777

RESUMO

Virus-based vectors are important tools in plant molecular biology and plant genomics. A number of vectors based on viruses that infect herbaceous plants are in use for expression or silencing of genes in plants as well as screening unknown sequences for function. Yet there is a need for useful virus-based vectors for woody plants, which demand much greater stability because of the longer time required for systemic infection and analysis. We examined several strategies to develop a Citrus tristeza virus (CTV)-based vector for transient expression of foreign genes in citrus trees using a green fluorescent protein (GFP) as a reporter. These strategies included substitution of the p13 open reading frame (ORF) by the ORF of GFP, construction of a self-processing fusion of GFP in-frame with the major coat protein (CP), or expression of the GFP ORF as an extra gene from a subgenomic (sg) mRNA controlled either by a duplicated CTV CP sgRNA controller element (CE) or an introduced heterologous CE of Beet yellows virus. Engineered vector constructs were examined for replication, encapsidation, GFP expression during multiple passages in protoplasts, and for their ability to infect, move, express GFP, and be maintained in citrus plants. The most successful vectors based on the 'add-a-gene' strategy have been unusually stable, continuing to produce GFP fluorescence after more than 4 years in citrus trees.


Assuntos
Citrus/genética , Closterovirus/genética , Vetores Genéticos , Biologia Molecular/métodos , Vírus de Plantas/genética , Closterovirus/fisiologia , Genes Reporter , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Vírus de Plantas/fisiologia , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...