Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 32(17): 6000-13, 2012 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-22539860

RESUMO

The extracellular levels of excitatory amino acids are kept low by the action of the glutamate transporters. Glutamate/aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1) are the most abundant subtypes and are essential for the functioning of the mammalian CNS, but the contribution of the EAAC1 subtype in the clearance of synaptic glutamate has remained controversial, because the density of this transporter in different tissues has not been determined. We used purified EAAC1 protein as a standard during immunoblotting to measure the concentration of EAAC1 in different CNS regions. The highest EAAC1 levels were found in the young adult rat hippocampus. Here, the concentration of EAAC1 was ∼0.013 mg/g tissue (∼130 molecules µm⁻³), 100 times lower than that of GLT-1. Unlike GLT-1 expression, which increases in parallel with circuit formation, only minor changes in the concentration of EAAC1 were observed from E18 to adulthood. In hippocampal slices, photolysis of MNI-D-aspartate (4-methoxy-7-nitroindolinyl-D-aspartate) failed to elicit EAAC1-mediated transporter currents in CA1 pyramidal neurons, and D-aspartate uptake was not detected electron microscopically in spines. Using EAAC1 knock-out mice as negative controls to establish antibody specificity, we show that these relatively small amounts of EAAC1 protein are widely distributed in somata and dendrites of all hippocampal neurons. These findings raise new questions about how so few transporters can influence the activation of NMDA receptors at excitatory synapses.


Assuntos
Sistema Nervoso Central/citologia , Transportador 3 de Aminoácido Excitatório/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Neurônios/metabolismo , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Ácido Aspártico/farmacologia , Sistema Nervoso Central/anatomia & histologia , Ácido D-Aspártico/metabolismo , Dendritos/metabolismo , Dendritos/ultraestrutura , Inibidores Enzimáticos/farmacologia , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Transportador 2 de Aminoácido Excitatório/deficiência , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 3 de Aminoácido Excitatório/deficiência , Transportador 3 de Aminoácido Excitatório/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteína Glial Fibrilar Ácida/metabolismo , Glutamato Descarboxilase/metabolismo , Técnicas In Vitro , Rim/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Imunoeletrônica , Proteína Básica da Mielina/metabolismo , Neurônios/efeitos dos fármacos , Parvalbuminas/metabolismo , Técnicas de Patch-Clamp , Proteolipídeos , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Frações Subcelulares/metabolismo , Sinaptofisina/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato
2.
J Histochem Cytochem ; 60(3): 174-87, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22215633

RESUMO

The biomedical research community relies directly or indirectly on immunocytochemical data. Unfortunately, validation of labeling specificity is difficult. A common specificity test is the preadsorption test. This test was intended for testing crude antisera but is now frequently used to validate monoclonal and affinity purified polyclonal antibodies. Here, the authors assess the power of this test. Nine affinity purified antibodies to different epitopes on 3 proteins (EAAT3, slc1a1; EAAT2, slc1a2; BGT1, slc6a12) were tested on samples (tissue sections and Western blots with or without fixation). The selected antibodies displayed some degree of cross-reactivity as defined by labeling of samples from knockout mice. The authors show that antigen preadsorption blocked all labeling of both wild-type and knockout samples, implying that preadsorption also blocked binding to cross-reactive epitopes. They show how this can give an illusion of specificity and illustrate sensitivity-specificity relationships, the importance of good negative controls, that fixation can create new epitopes, and that cross-reacting epitopes present in sections may not be present on Western blots and vice versa. In conclusion, they argue against uncritical use of the preadsorption test and, in doing so, address a number of other issues related to immunocytochemistry specificity testing.


Assuntos
Anticorpos/imunologia , Especificidade de Anticorpos , Imuno-Histoquímica/métodos , Adsorção , Animais , Anticorpos/metabolismo , Afinidade de Anticorpos , Antígenos/imunologia , Artefatos , Western Blotting , Reações Cruzadas , Epitopos , Transportador 2 de Aminoácido Excitatório/análise , Transportador 2 de Aminoácido Excitatório/imunologia , Transportador 3 de Aminoácido Excitatório/análise , Transportador 3 de Aminoácido Excitatório/imunologia , Proteínas da Membrana Plasmática de Transporte de GABA/análise , Proteínas da Membrana Plasmática de Transporte de GABA/imunologia , Soros Imunes/imunologia , Camundongos , Camundongos Knockout , Ratos , Ratos Wistar , Sensibilidade e Especificidade , Soluções
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...