Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732991

RESUMO

This paper presents findings from a spaceborne Earth observation experiment utilizing a novel, ultra-compact hyperspectral imaging camera aboard a 3U CubeSat. Leveraging the Offner optical scheme, the camera's hyperspectrometer captures hyperspectral images of terrestrial regions with a 200 m spatial resolution and 12 nanometer spectral resolution across a 400 to 1000 nanometer wavelength range, covering 150 channels in the visible and near-infrared spectrums. The hyperspectrometer is specifically designed for deployment on a 3U CubeSat nanosatellite platform, featuring a robust all-metal cylindrical body of the hyperspectrometer, and a coaxial arrangement of the optical elements ensures optimal compactness and vibration stability. The performance of the imaging hyperspectrometer was rigorously evaluated through numerical simulations prior to construction. Analysis of hyperspectral data acquired over a year-long orbital operation demonstrates the 3U CubeSat's ability to produce various vegetation indices, including the normalized difference vegetation index (NDVI). A comparative study with the European Space Agency's Sentinel-2 L2A data shows a strong agreement at critical points, confirming the 3U CubeSat's suitability for hyperspectral imaging in the visible and near-infrared spectrums. Notably, the ISOI 3U CubeSat can generate unique index images beyond the reach of Sentinel-2 L2A, underscoring its potential for advancing remote sensing applications.

2.
Nanomaterials (Basel) ; 13(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36770573

RESUMO

Recently, the realization of the spiral mass transfer of matter has attracted the attention of many researchers. Nano- and microstructures fabricated with such mass transfer can be used for the generation of light with non-zero orbital angular momentum (OAM) or the sensing of chiral molecules. In the case of metals and semiconductors, the chirality of formed spiral-shaped microstructures depends on the topological charge (TC) of the illuminating optical vortex (OV) beam. The situation is quite different with polarization-sensitive materials such as azopolymers, azobenzene-containing polymers. Azopolymers show polarization-sensitive mass transfer both at the meso and macro levels and have huge potential in diffractive optics and photonics. Previously, only one-spiral patterns formed in thin azopolymer films using circularly polarized OV beams and double-spiral patterns formed using linearly polarized OV beams have been demonstrated. In these cases, the TC of the used OV beams did not affect the number of formed spirals. In this study, we propose to use two-beam (an OV and a Gaussian beam with a spherical wavefront) interference lithography for realization spiral mass transfer with the desired number of formed spirals. The TC of the OV beam allows for controlling the number of formed spirals. We show the microstructures fabricated by the laser processing of thin azopolymer films can be used for the generation of OAM light at the microscale with the desired TC. The experimentally obtained results are in good agreement with the numerically obtained results and demonstrate the potential of the use of such techniques for the laser material processing of polarization-sensitive materials.

3.
Sensors (Basel) ; 23(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36616710

RESUMO

The polarization sensitivity of azopolymers is well known. Therefore, these materials are actively used in many applications of photonics. Recently, the unique possibilities of processing such materials using a structured laser beam were demonstrated, which revealed the key role of the distribution of polarization and the longitudinal component of light in determining the shape of the nano- and microstructures formed on the surfaces of thin azopolymer films. Here, we present numerical and experimental results demonstrating the high polarization sensitivity of thin azopolymer films to the local polarization state of an illuminating structured laser beam consisting of a set of light spots. To form such arrays of spots with a controlled distribution of polarization, different polarization states of laser beams, both homogeneous and locally inhomogeneous, were used. The results obtained show the possibility of implementing a parallel non-uniform patterning of thin azopolymer films depending on the polarization distribution of the illuminating laser beam. We believe that the demonstrated results will not only make it possible to implement the simultaneous detection of local polarization states of complex-shaped light fields but will also be used for the high-performance fabrication of diffractive optical elements and metasurfaces.

4.
Sci Rep ; 8(1): 14320, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30254283

RESUMO

Nowadays, the well-known cylindrical vector beams (CVBs) - the axially symmetric beam solution to the full-vector electromagnetic wave equation - are widely used for advanced laser material processing, optical manipulation and communication and have a great interest for data storage. Higher-order CVBs with polarisation order greater than one and superpositions of CVBs of various orders (hybrid CVBs) are especially of interest because of their great potential in contemporary optics. We performed a theoretical analysis of the transformation of first-order CVBs (radially and azimuthally polarised beams) into hybrid higher-order ones using phase elements with complex transmission functions in the form of the cosine or sine functions of the azimuthal angle. Binary multi-sector phase plates approximating such transmission functions were fabricated and experimentally investigated. The influence of the number of sectors and a height difference between neighbouring sectors, as well as the energy contribution of the different components in the generated hybrid higher-order CVBs were discussed in the context of polarisation transformation and vector optical field transformation in the focal region. The possibility of polarisation transformation, even in the case of weak focusing, is also demonstrated. The simple structure of the profile of such plates, their high diffraction efficiency and high damage threshold, as well as the easy-to-implement polarisation transformation principle provide advanced opportunities for high-efficient, quickly-switchable dynamic control of the generation of structured laser beams.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...