Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(22): 19807-19815, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37305259

RESUMO

Aerosols play an important role in climate and air quality; however, the mechanisms behind aerosol particle formation in the atmosphere are poorly understood. Studies have identified sulfuric acid, water, oxidized organics, and ammonia/amines as key precursors for forming aerosol particles in the atmosphere. Theoretical and experimental investigations have indicated that other species, such as organic acids, may be involved in atmospheric nucleation and growth of freshly formed aerosol particles. Organic acids, such as dicarboxylic acids, which are abundant in the atmosphere, have been measured in ultrafine aerosol particles. These observations suggest that organic acids may contribute to new particle formation in the atmosphere but their role remains ambiguous. This study examines how malonic acid interacts with sulfuric acid and dimethylamine to form new particles at warm boundary layer conditions using experimental observations from a laminar flow reactor and quantum chemical calculations coupled with cluster dynamics simulations. Observations reveal that malonic acid does not contribute to the initial steps (formation of <1 nm diameter particle) of nucleation with sulfuric acid-dimethylamine. In addition, malonic acid was found to not participate in the subsequent growth of the freshly nucleated 1 nm particles from sulfuric acid-dimethylamine reactions to diameters of 2 nm.

2.
J Phys Chem A ; 126(44): 8240-8248, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36287779

RESUMO

Atmospheric nucleation from precursor gases is a significant source of cloud condensation nuclei in the troposphere and thus can affect the Earth's radiative balance. Sulfuric acid, ammonia, and amines have been identified as key nucleation precursors in the atmosphere. Studies have also shown that atmospheric ions can react with sulfuric acid to form stable clusters in a process referred to as ion-induced nucleation (IIN). IIN follows similar reaction pathways as chemical ionization, which is used to detect and measure nucleation precursors via atmospheric pressure chemical ionization mass spectrometers. The rate at which ions form clusters depends on the ion-molecule rate constant. However, the rate constant varies based on the ion composition, which is often not known in the atmosphere. Previous studies have examined ion-molecule rate constants for sulfuric acid and nitrate ions but not for other atmospherically relevant ions like acetate. We report the relative rate constants of ion-molecule reactions between nitrate and acetate ions reacting with sulfuric acid. The ion-molecule rate constant for acetate and sulfuric acid is estimated to be a factor of 1.9-2.4 times higher than that of the known rate constant for nitrate and sulfuric acid. Using quantum chemistry, we find that acetate has a higher dipole moment and polarizability than nitrate. This may contribute to an increase in the collision cross-sectional area between acetate and sulfuric acid and lead to a greater reaction rate constant than nitrate. The ion-molecule rate constant for acetate with sulfuric acid will help quantify the contribution of acetate ions to atmospheric ion-induced new particle formation.

3.
J Phys Chem A ; 126(25): 4057-4067, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35729723

RESUMO

Alkanolamines such as monoethanolamine (MEA), diethanolamine (DEA), and triethanolamine (TEA) are extensively used for CO2 capture and consumer products. Despite their prevalence in industrial applications, the fate of alkanolamines in the atmosphere remains relatively unknown. One likely reaction pathway for these chemicals in the atmosphere is new particle formation with sulfuric acid. Here, we present the first experimental results showing the formation of sulfuric acid dimers enhanced by MEA, DEA, and TEA from the measurement of molecular clusters. This study examines the nucleation reactions of MEA, DEA, and TEA with sulfuric acid in a clean, laminar flow reactor. The chemical compositions and concentrations of the freshly nucleated clusters were analyzed using a custom-built atmospheric pressure chemical ionization long time-of-flight mass spectrometer known as the Pittsburgh Cluster CIMS. Quantum chemical calculations and kinetic modeling of sulfuric acid-MEA/DEA/TEA clusters were also performed to determine relative cluster stabilities between these sulfuric acid-base systems. Experimental results indicate that MEA, DEA, and TEA at the part per trillion by volume (pptv) concentrations can enhance sulfuric acid dimer formation rates but to a lesser extent than dimethylamine (DMA). Thus, MEA, DEA, and TEA will potentially play an important role in new particle formation in industrial cities where these alkanolamines are emitted.


Assuntos
Etanolamina , Ácidos Sulfúricos , Atmosfera/química , Etanolamina/química , Modelos Teóricos , Ácidos Sulfúricos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...