Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Discov ; 10(1): 245, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778055

RESUMO

Lamins A and C, encoded by the LMNA gene, are nuclear intermediate filaments that provide structural support to the nucleus and contribute to chromatin organization and transcriptional regulation. LMNA mutations cause muscular dystrophies, dilated cardiomyopathy, and other diseases. The mechanisms by which many LMNA mutations result in muscle-specific diseases have remained elusive, presenting a major hurdle in the development of effective treatments. Previous studies using striated muscle laminopathy mouse models found that cytoskeletal forces acting on mechanically fragile Lmna-mutant nuclei led to transient nuclear envelope rupture, extensive DNA damage, and activation of DNA damage response (DDR) pathways in skeletal muscle cells in vitro and in vivo. Furthermore, hearts of Lmna mutant mice have elevated activation of the tumor suppressor protein p53, a central regulator of DDR signaling. We hypothesized that elevated p53 activation could present a pathogenic mechanism in striated muscle laminopathies, and that eliminating p53 activation could improve muscle function and survival in laminopathy mouse models. Supporting a pathogenic function of p53 activation in muscle, stabilization of p53 was sufficient to reduce contractility and viability in wild-type muscle cells in vitro. Using three laminopathy models, we found that increased p53 activity in Lmna-mutant muscle cells primarily resulted from mechanically induced damage to the myonuclei, and not from altered transcriptional regulation due to loss of lamin A/C expression. However, global deletion of p53 in a severe muscle laminopathy model did not reduce the disease phenotype or increase survival, indicating that additional drivers of disease must contribute to the disease pathogenesis.

2.
Cell Death Discov ; 6(1): 95, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33083017

RESUMO

Muscle-specific adult stem cells (MuSCs) are required for skeletal muscle regeneration. To ensure efficient skeletal muscle regeneration after injury, MuSCs must undergo state transitions as they are activated from quiescence, give rise to a population of proliferating myoblasts, and continue either to terminal differentiation, to repair or replace damaged myofibers, or self-renewal to repopulate the quiescent population. Changes in MuSC/myoblast state are accompanied by dramatic shifts in their transcriptional profile. Previous reports in other adult stem cell systems have identified alterations in the most abundant internal mRNA modification, N6-methyladenosine (m6A), conferred by its active writer, METTL3, to regulate cell state transitions through alterations in the transcriptional profile of these cells. Our objective was to determine if m6A-modification deposition via METTL3 is a regulator of MuSC/myoblast state transitions in vitro and in vivo. Using liquid chromatography/mass spectrometry we identified that global m6A levels increase during the early stages of skeletal muscle regeneration, in vivo, and decline when C2C12 myoblasts transition from proliferation to differentiation, in vitro. Using m6A-specific RNA-sequencing (MeRIP-seq), a distinct profile of m6A-modification was identified, distinguishing proliferating from differentiating C2C12 myoblasts. RNAi studies show that reducing levels of METTL3, the active m6A methyltransferase, reduced global m6A levels and forced C2C12 myoblasts to prematurely differentiate. Reducing levels of METTL3 in primary mouse MuSCs prior to transplantation enhanced their engraftment capacity upon primary transplantation, however their capacity for serial transplantation was lost. In conclusion, METTL3 regulates m6A levels in MuSCs/myoblasts and controls the transition of MuSCs/myoblasts to different cell states. Furthermore, the first transcriptome wide map of m6A-modifications in proliferating and differentiating C2C12 myoblasts is provided and reveals a number of genes that may regulate MuSC/myoblast state transitions which had not been previously identified.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...