Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Elife ; 122023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37212456

RESUMO

Deep brain stimulation targeting the posterior hypothalamus (pHyp-DBS) is being investigated as a treatment for refractory aggressive behavior, but its mechanisms of action remain elusive. We conducted an integrated imaging analysis of a large multi-centre dataset, incorporating volume of activated tissue modeling, probabilistic mapping, normative connectomics, and atlas-derived transcriptomics. Ninety-one percent of the patients responded positively to treatment, with a more striking improvement recorded in the pediatric population. Probabilistic mapping revealed an optimized surgical target within the posterior-inferior-lateral region of the posterior hypothalamic area. Normative connectomic analyses identified fiber tracts and functionally connected with brain areas associated with sensorimotor function, emotional regulation, and monoamine production. Functional connectivity between the target, periaqueductal gray and key limbic areas - together with patient age - were highly predictive of treatment outcome. Transcriptomic analysis showed that genes involved in mechanisms of aggressive behavior, neuronal communication, plasticity and neuroinflammation might underlie this functional network.


Assuntos
Estimulação Encefálica Profunda , Criança , Humanos , Estimulação Encefálica Profunda/métodos , Encéfalo , Agressão/psicologia , Hipotálamo Posterior/fisiologia , Resultado do Tratamento , Imageamento por Ressonância Magnética
2.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36292973

RESUMO

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is considered the gold-standard treatment for PD; however, underlying therapeutic mechanisms need to be comprehensively elucidated, especially in relation to glial cells. We aimed to understand the effects of STN-microlesions and STN-DBS on striatal glial cells, inflammation, and extracellular glutamate/GABAergic concentration in a 6-hydroxydopamine (6-OHDA)-induced PD rat model. Rats with unilateral striatal 6-OHDA and electrodes implanted in the STN were divided into two groups: DBS OFF and DBS ON (5 days/2 h/day). Saline and 6-OHDA animals were used as control. Akinesia, striatal reactivity for astrocytes, microglia, and inflammasome, and expression of cytokines, cell signaling, and excitatory amino acid transporter (EAAT)-2 were examined. Moreover, striatal microdialysis was performed to evaluate glutamate and GABA concentrations. The PD rat model exhibited akinesia, increased inflammation, glutamate release, and decreased glutamatergic clearance in the striatum. STN-DBS (DBS ON) completely abolished akinesia. Both STN-microlesion and STN-DBS decreased striatal cytokine expression and the relative concentration of extracellular glutamate. However, STN-DBS inhibited morphological changes in astrocytes, decreased inflammasome reactivity, and increased EAAT2 expression in the striatum. Collectively, these findings suggest that the beneficial effects of DBS are mediated by a combination of stimulation and local microlesions, both involving the inhibition of glial cell activation, neuroinflammation, and glutamate excitotoxicity.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Animais , Ratos , Doença de Parkinson/etiologia , Doença de Parkinson/terapia , Doença de Parkinson/metabolismo , Oxidopamina , Inflamassomos/metabolismo , Eletrodos , Glutamatos , Inflamação/terapia , Citocinas/metabolismo , Sistemas de Transporte de Aminoácidos , Ácido gama-Aminobutírico
3.
Neurosurgery ; 91(1): 139-145, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35550448

RESUMO

BACKGROUND: Hemidystonia (HD) is characterized by unilateral involuntary torsion movements and fixed postures of the limbs and face. It often develops after deleterious neuroplastic changes secondary to injuries to the brain. This condition usually responds poorly to medical treatment, and deep brain stimulation often yields unsatisfactory results. We propose this study based on encouraging results from case reports of patients with HD treated by ablative procedures in the subthalamic region. OBJECTIVE: To compare the efficacy of stereotactic-guided radiofrequency lesioning of the subthalamic area vs available medical treatment in patients suffering from acquired HD. METHODS: This is an open-label study in patients with secondary HD allocated according to their treatment choice, either surgical or medical treatment; both groups were followed for one year. Patients assigned in the surgical group underwent unilateral campotomy of Forel. The efficacy was assessed using the Unified Dystonia Rating Scale, Fahn-Marsden Dystonia Scale, Arm Dystonia Disability Scale, and SF-36 questionnaire scores. RESULTS: Patients in the surgical group experienced significant improvement in the Unified Dystonia Rating Scale, Fahn-Marsden Dystonia Scale, and Arm Dystonia Disability Scale (39%, 35%, and 15%, respectively) 1 year after the surgery, with positive reflex in quality-of-life measures, such as bodily pain and role-emotional process. Patients kept on medical treatment did not experience significant changes during the follow-up. No infections were recorded, and no neurological adverse events were associated with either intervention. CONCLUSION: The unilateral stereotaxy-guided ablation of Forel H1 and H2 fields significantly improved in patients with HD compared with optimized clinical treatment.


Assuntos
Estimulação Encefálica Profunda , Distonia , Distúrbios Distônicos , Estimulação Encefálica Profunda/métodos , Distonia/etiologia , Distonia/terapia , Distúrbios Distônicos/etiologia , Globo Pálido/cirurgia , Humanos , Resultado do Tratamento
4.
Int J Mol Sci, v. 23, 20, 12116, out. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4669

RESUMO

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is considered the goldstandard treatment for PD; however, underlying therapeutic mechanisms need to be comprehensively elucidated, especially in relation to glial cells. We aimed to understand the effects of STN-microlesions and STN-DBS on striatal glial cells, inflammation, and extracellular glutamate/GABAergic concentration in a 6-hydroxydopamine (6-OHDA)-induced PD rat model. Rats with unilateral striatal 6-OHDA and electrodes implanted in the STN were divided into two groups: DBS OFF and DBS ON (5 days/2 h/day). Saline and 6-OHDA animals were used as control. Akinesia, striatal reactivity for astrocytes, microglia, and inflammasome, and expression of cytokines, cell signaling, and excitatory amino acid transporter (EAAT)-2 were examined. Moreover, striatal microdialysis was performed to evaluate glutamate and GABA concentrations. The PD rat model exhibited akinesia, increased inflammation, glutamate release, and decreased glutamatergic clearance in the striatum. STN-DBS (DBS ON) completely abolished akinesia. Both STN-microlesion and STN-DBS decreased striatal cytokine expression and the relative concentration of extracellular glutamate. However, STN-DBS inhibited morphological changes in astrocytes, decreased inflammasome reactivity, and increased EAAT2 expression in the striatum. Collectively, these findings suggest that the beneficial effects of DBS are mediated by a combination of stimulation and local microlesions, both involving the inhibition of glial cell activation, neuroinflammation, and glutamate excitotoxicity.

6.
World Neurosurg ; 155: e19-e33, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34325026

RESUMO

BACKGROUND: Intermittent explosive disorder (IED) is a psychiatric disorder characterized by recurrent outbursts of aggressive behavior. Deep brain stimulation (DBS) in the posteromedial nucleus of the hypothalamus (pHyp) is an alternative therapy for extreme cases and shows promising results. Intraoperative microdialysis can help elucidate the neurobiological mechanism of pHyp-DBS. We sought to evaluate efficacy and safety of pHyp-DBS using 8-contact directional leads in patients with refractory IED (rIED) and the accompanying changes in neurotransmitters. METHODS: This was a prospective study in which patients with a diagnosis of rIED were treated with pHyp-DBS for symptom alleviation. Bilateral pHyp-DBS was performed with 8-contact directional electrodes. Follow-up was performed at 3, 6, and 12 months after surgery. RESULTS: Four patients (3 men, mean age 27 ± 2.8 years) were included. All patients were diagnosed with rIED and severe intellectual disability. Two patients had congenital rubella, one had a co-diagnosis of infantile autism, and the fourth presented with drug-resistant epilepsy. There was a marked increase in the levels of gamma-aminobutyric acid and glycine during intraoperative stimulation. The average improvement in aggressive behavior in the last follow-up was 6 points (Δ: 50%, P = 0.003) while also documenting an important improvement of the Short Form Health Survey in all domains except bodily pain. No adverse events associated with pHyp-DBS were observed. CONCLUSIONS: This is the first study to show the safety and beneficial effect of directional lead pHyp-DBS in patients with rIED and to demonstrate the corresponding mechanism of action through increases in gamma-aminobutyric acid and glycine concentration in the pHyp.


Assuntos
Estimulação Encefálica Profunda , Transtornos Disruptivos, de Controle do Impulso e da Conduta/cirurgia , Hipotálamo/cirurgia , Adulto , Feminino , Humanos , Hipotálamo/fisiopatologia , Masculino , Estudos Prospectivos , Resultado do Tratamento , Adulto Jovem
7.
Parkinsonism Relat Disord ; 83: 1-5, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33385858

RESUMO

INTRODUCTION: Hereditary spastic paraplegia is a heterogeneous group of genetic disorders characterized by degeneration of the corticospinal tracts, coursing with progressive weakness and spasticity of the lower limbs. To date, there are no effective treatments for progressive deficits or disease-modifying therapy for those patients. We report encouraging results for spastic paraparesis after spinal cord stimulation. METHODS: A 51-year-old woman suffering from progressive weakness and spasticity in lower limbs related to hereditary spastic paraplegia type 4 underwent spinal cord stimulation (SCS) and experienced also significant improvement in motor function. Maximum ballistic voluntary isometric contraction test, continuous passive motion test and gait analysis using a motion-capture system were performed in ON and OFF SCS conditions. Neurophysiologic assessment consisted of obtaining motor evoked potentials in both conditions. RESULTS: Presurgical Spastic Paraplegia Rating Scale (SPRS) score was 26. One month after effective SCS was initiated, SPRS went down to 15. At 12 months follow up, she experienced substantial improvement in motor function and in gait performance, with SPRS scores 23 (OFF) and down to 20 (ON). There was an increased isometric muscle strength (knee extension, OFF: 41 N m; ON: 71 N m), lower knee extension and flexion torque values in continuous passive motion test (decrease in spastic tone) and improvement in gait (for example, step length increase). CONCLUSION: Despite being a case study, our findings suggest innovative lines of research for the treatment of spastic paraplegia.


Assuntos
Transtornos Neurológicos da Marcha/reabilitação , Atividade Motora , Paraplegia/reabilitação , Paraplegia Espástica Hereditária/reabilitação , Estimulação da Medula Espinal , Feminino , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/fisiopatologia , Humanos , Pessoa de Meia-Idade , Atividade Motora/fisiologia , Paraplegia/complicações , Paraplegia/fisiopatologia , Índice de Gravidade de Doença , Paraplegia Espástica Hereditária/complicações , Paraplegia Espástica Hereditária/fisiopatologia
8.
Neurosurgery ; 88(2): E158-E169, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33026432

RESUMO

BACKGROUND: Intractable aggressive behavior (iAB) is a devastating behavioral disorder that may affect psychiatric patients. These patients have reduced quality of life, are more challenging to treat as they impose a high caregiver burden and require specialized care. Neuromodulatory interventions targeting the amygdala, a key hub in the circuitry of aggressive behavior (AB), may provide symptom alleviation. OBJECTIVE: To Report clinical and imaging findings from a case series of iAB patients treated with bilateral amygdala ablation. METHODS: This series included 4 cases (3 males, 19-32 years old) who underwent bilateral amygdala radiofrequency ablation for iAB hallmarked by life-threatening self-injury and social aggression. Pre- and postassessments involved full clinical, psychiatric, and neurosurgical evaluations, including scales quantifying AB, general agitation, quality of life, and magnetic resonance imaging (MRI). RESULTS: Postsurgery assessments revealed decreased aggression and agitation and improved quality of life. AB was correlated with testosterone levels and testosterone/cortisol ratio in males. No clinically significant side effects were observed. Imaging analyses showed preoperative amygdala volumes within normal populational range and confirmed lesion locations. The reductions in aggressive symptoms were accompanied by significant postsurgical volumetric reductions in brain areas classically associated with AB and increases in regions related to somatosensation. The local volumetric reductions are found in areas that in a normal brain show high expression levels of genes related to AB (eg, aminergic transmission) using gene expression data provided by the Allen brain atlas. CONCLUSION: These findings provide new insight into the whole brain neurocircuitry of aggression and suggest a role of altered somatosensation and possible novel neuromodulation targets.


Assuntos
Agressão/fisiologia , Tonsila do Cerebelo/cirurgia , Transtornos Mentais/fisiopatologia , Transtornos Mentais/cirurgia , Adulto , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Masculino , Qualidade de Vida , Ablação por Radiofrequência/métodos , Radiocirurgia/métodos , Adulto Jovem
9.
World Neurosurg, v. 155, p. e19-e33, jul. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3911

RESUMO

Intermittent Explosive Disorder (IED) is a psychiatric disorder characterized by recurrent outbursts of aggressive behaviour. Deep brain stimulation (DBS) in the posteromedial nucleus of the hypothalamus (pHyp) is an alternative therapy for extreme cases and shows promising results. Intraoperative microdialysis can help elucidate the neurobiological mechanism of pHyp-DBS. Objective To evaluate efficacy and safety of pHyp-DBS using eight-contact directional leads in patients with refractory IED (rIED) and the accompanying changes in neurotransmitters. Methods A prospective study in which patients with a diagnosis of rIED were treated with pHyp-DBS for symptom alleviation. Bilateral pHyp-DBS was performed with eight-contact directional electrodes. Follow-up was performed at 3, 6 and 12 months after surgery. Results Four patients (3 men, mean age 27 ± 2.8 yr) were included. All patients were diagnosed with rIED and severe intellectual disability. Two patients had congenital rubella, one has co-diagnosis of infantile autism and the fourth presents with drug-resistant epilepsy. There was a marked increase in the levels of GABA and glycine during intraoperative stimulation. The average improvement in aggressive behaviour in the last follow-up was 6 points (Δ: 50%, p= 0.003) while also documenting an important improvement of the SF-36 in all domains except bodily pain. No adverse events associated with pHyp-DBS were observed. Conclusions This is the first study to show the safety and beneficial effect of directional lead pHyp-DBS in patients with refractory Intermittent Explosive Disorder and to demonstrate the corresponding mechanism of action through increases in GABA and glycine concentration in the pHyp.

10.
Brain Stimul ; 13(6): 1697-1705, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33038595

RESUMO

BACKGROUND: Subthalamic (STN) and pallidal (GPi) deep brain stimulation (DBS) improve quality of life, motor, and nonmotor symptoms (NMS) in advanced Parkinson's disease (PD). However, few studies have compared their nonmotor effects. OBJECTIVE: To compare nonmotor effects of STN-DBS and GPi-DBS. METHODS: In this prospective, observational, multicenter study including 60 PD patients undergoing bilateral STN-DBS (n = 40) or GPi-DBS (n = 20), we examined PDQuestionnaire (PDQ), NMSScale (NMSS), Unified PD Rating Scale-activities of daily living, -motor impairment, -complications (UPDRS-II, -III, -IV), Hoehn&Yahr, Schwab&England Scale, and levodopa-equivalent daily dose (LEDD) preoperatively and at 6-month follow-up. Intra-group changes at follow-up were analyzed with Wilcoxon signed-rank or paired t-test, if parametric tests were applicable, and corrected for multiple comparisons. Inter-group differences were explored with Mann-Whitney-U/unpaired t-tests. Analyses were performed before and after propensity score matching which balanced out demographic and preoperative clinical characteristics. Strength of clinical changes was assessed with effect size. RESULTS: In both groups, PDQ, UPDRS-II, -IV, Schwab&England Scale, and NMSS improved significantly at follow-up. STN-DBS was significantly better for LEDD reduction, GPi-DBS for UPDRS-IV. While NMSS total score outcomes were similar, explorative NMSS domain analyses revealed distinct profiles: Both targets improved sleep/fatigue and mood/cognition, but only STN-DBS the miscellaneous (pain/olfaction) and attention/memory and only GPi-DBS cardiovascular and sexual function domains. CONCLUSIONS: To our knowledge, this is the first study to report distinct patterns of beneficial nonmotor effects of STN-DBS and GPi-DBS in PD. This study highlights the importance of NMS assessments to tailor DBS target choices to patients' individual motor and nonmotor profiles.


Assuntos
Estimulação Encefálica Profunda/métodos , Globo Pálido/fisiologia , Doença de Parkinson/psicologia , Doença de Parkinson/terapia , Núcleo Subtalâmico/fisiologia , Atividades Cotidianas/psicologia , Idoso , Fadiga/fisiopatologia , Feminino , Seguimentos , Humanos , Levodopa/farmacologia , Levodopa/uso terapêutico , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/fisiopatologia , Estudos Prospectivos , Qualidade de Vida/psicologia , Sono/efeitos dos fármacos , Resultado do Tratamento
11.
Neurobiol Stress ; 12: 100219, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32435668

RESUMO

Avoidance behavior is a hallmark in pathological anxiety disorders and results in impairment of daily activities. Individual differences in avoidance responses are critical in determining vulnerability or resistance to anxiety disorders. Dopaminergic activation is implicated in the processing of avoidance responses; however, the mechanisms underlying these responses are unknown. In this sense, we used a preclinical model of avoidance behavior to investigate the possibility of an intrinsic differential dopaminergic pattern between good and poor performers. The specific goal was to assess the participation of dopamine (DA) through pharmacological manipulation, and we further evaluated the effects of systemic injections of the dopaminergic receptor type 1 (D1 antagonist - SCH23390) and dopaminergic receptor type 2 (D2 antagonist - sulpiride) antagonists in the good performers. Additionally, we evaluated the effects of intra-amygdala microinjection of a D1 antagonist (SCH23390) and a D2 antagonist (sulpiride) in good performers as well as intra-amygdala microinjection of a D1 agonist (SKF38393) and D2 agonist (quinpirole) in poor performers. Furthermore, we quantified the contents of dopamine and metabolites (3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA)) in the amygdala, evaluated the basal levels of tyrosine hydroxylase expression (catecholamine synthesis enzyme) and measured the volume of the substantia nigra, ventral tegmental area and locus coeruleus. Our results showed that it could be possible to convert animals from good to poor performers, and vice versa, by intra-amygdala (basolateral and central nucleus) injections of D1 receptor antagonists in good performers or D2 receptor agonists in poor performers. Additionally, the good performers had lower levels of DOPAC and HVA in the amygdala, an increase in the total volume of the amygdala (AMG), substantia nigra (SN), ventral tegmental area (VTA) and locus coeruleus (LC), and an increase in the number of tyrosine hydroxylase-positive cells in SN, VTA and LC, which positively correlates with the avoidance behavior. Taken together, our data show evidence for a dopaminergic signature of avoidance performers, emphasizing the role of distinct dopaminergic receptors in individual differences in avoidance behavior based on pharmacological, immunohistochemical, neurochemical and volumetric analyses. Our findings provide a better understanding of the role of the dopaminergic system in the execution of avoidance behavior.

12.
Front Neurol ; 11: 9, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116998

RESUMO

Background: Pain is highly prevalent in Parkinson's disease and is associated with significant reduction in health-related quality of life. Subthalamic deep brain stimulation can produce significant pain relief in a subset of patients after surgery. However, the mechanism by which deep brain stimulation modulates sensory function in Parkinson's disease remains uncertain. Objective: To describe the motor and pain outcomes of deep brain stimulation applied to a series of patients with Parkinson's disease and to determine whether the structural connectivity between the volume of tissue activated and different regions of the brain was associated with the changes of these outcomes after surgery. Methods: Data from a long-term prospective cohort of 32 Parkinson's disease patients with subthalamic stimulation were combined with available human connectome to identify connections consistently associated with clinical improvement (Unified Parkinson Disease Rating Scale), pain intensity, and experimental cold pain threshold after surgery. Results: The connectivity between the volume of tissue activated and a distributed network of sensory brain regions (prefrontal, insular and cingulate cortex, and postcentral gyrus) was inversely correlated with pain intensity improvement and reduced sensitivity to cold pain after surgery (p < 0.01). The connectivity strength with the supplementary motor area positively correlated with motor and pain threshold improvement (p < 0.05). Conclusions: These data suggest that the pattern of the connectivity between the region stimulated and specific brain cortical area might be responsible, in part, for the successful control of motor and pain symptoms by subthalamic deep brain stimulation in Parkinson's disease.

13.
Cell Mol Neurobiol ; 40(6): 939-954, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31939008

RESUMO

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective therapeutic strategy for motor symptoms of Parkinson's disease (PD) when L-DOPA therapy induces disabling side effects. Classical inflammatory activation of glial cells is well established in PD, contributing to the progressive neurodegenerative state; however, the role of DBS in regulating the inflammatory response remains largely unknown. To understand the involvement of astrocytes in the mechanisms of action of DBS, we evaluated the effect of STN-DBS in regulating motor symptoms, astrocyte reactivity, and cytokine expression in a 6-OHDA-induced PD rat model. To mimic in vivo DBS, we investigate the effect of high-frequency stimulation (HFS) in cultured astrocytes regulating cytokine induction and NF-κB activation. We found that STN-DBS improved motor impairment, induced astrocytic hyperplasia, and reversed increased IFN-γ and IL-10 levels in the globus pallidus (GP) of lesioned rats. Moreover, HFS activated astrocytes and prevented TNF-α-induced increase of monocyte chemoattractant protein-1 (MCP-1) and NF-κB activation in vitro. Our results indicate that DBS/HFS may act as a regulator of the inflammatory response in PD states, attenuating classical activation of astrocytes and cytokine induction, potentially through its ability to regulate NF-κB activation. These findings may help us understand the role of astrocyte signaling in HFS, highlighting its possible relationship with the effectiveness of DBS in neurodegenerative disorders.


Assuntos
Astrócitos/patologia , Estimulação Encefálica Profunda , Doença de Parkinson/patologia , Núcleo Subtalâmico/patologia , Animais , Modelos Animais de Doenças , Estimulação Elétrica , Globo Pálido/patologia , Hiperplasia , Inflamação/patologia , Masculino , Camundongos , Atividade Motora , NF-kappa B/metabolismo , Ratos Wistar , Transdução de Sinais , Fator de Necrose Tumoral alfa/farmacologia
14.
Front Neurol ; 11: 597451, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584498

RESUMO

Deep brain stimulation (DBS) is one of the most important clinical therapies for neurological disorders. DBS also has great potential to become a great tool for clinical neuroscience research. Recently, the National Engineering Laboratory for Neuromodulation at Tsinghua University held an international Deep Brain Stimulation Initiative workshop to discuss the cutting-edge technological achievements and clinical applications of DBS. We specifically addressed new clinical approaches and challenges in DBS for movement disorders (Parkinson's disease and dystonia), clinical application toward neurorehabilitation for stroke, and the progress and challenges toward DBS for neuropsychiatric disorders. This review highlighted key developments in (1) neuroimaging, with advancements in 3-Tesla magnetic resonance imaging DBS compatibility for exploration of brain network mechanisms; (2) novel DBS recording capabilities for uncovering disease pathophysiology; and (3) overcoming global healthcare burdens with online-based DBS programming technology for connecting patient communities. The successful event marks a milestone for global collaborative opportunities in clinical development of neuromodulation to treat major neurological disorders.

15.
Front Neurol ; 11: 598851, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33414759

RESUMO

Periodontal disease (PD) is an infectious-inflammatory oral disease that is highly prevalent among adolescence and adulthood and can lead to chronic orofacial pain and be associated with anxiety, stress and depression. This study aimed to identify anxiety-like behaviors in the ligature-induced murine preclinical model of PD in different phases of the disease (i.e., acute vs. chronic). Also, we investigated orofacial mechanical allodynia thresholds and superficial cortical plasticity along the orofacial motor cortex in both disease phases. To this aim, 25 male Wistar rats were randomly allocated in acute (14 days) or chronic (28 days) ligature-induced-PD groups and further divided into active-PD or sham-PD. Anxiety-like behavior was evaluated using the elevated plus maze, mechanical allodynia assessed using the von Frey filaments test and superficial motor cortex mapping was performed with electrical transdural stimulation. We observed increased anxiety-like behavior in active-PD animals in the acute phase, characterized by decreased number of entries into the open arm extremities [t (1,7) = 2.42, p = 0.04], and reduced time spent in the open arms [t (1,7) = 3.56, p = 0.01] and in the open arm extremities [t (1,7) = 2.75, p = 0.03]. There was also a reduction in the mechanical allodynia threshold in all active-PD animals [Acute: t (1,7) = 8.81, p < 0.001; Chronic: t (1,6) = 60.0, p < 0.001], that was positively correlated with anxiety-like behaviors in the acute group. No differences were observed in motor cortex mapping. Thus, our findings show the presence of anxiety-like behaviors in the acute phase of PD making this a suitable model to study the impact of anxiety in treatment response and treatment efficacy.

16.
Front Neurol ; 10: 905, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31507514

RESUMO

Spinal cord stimulation (SCS) has been used for the treatment of chronic pain for nearly five decades. With a high degree of efficacy and a low incidence of adverse events, it is now considered to be a suitable therapeutic alternative in most guidelines. Experimental studies suggest that SCS may also be used as a therapy for motor and gait dysfunction in parkinsonian states. The most common and disabling gait dysfunction in patients with Parkinson's disease (PD) is freezing of gait (FoG). We review the evolution of SCS for gait disorders from bench to bedside and discuss potential mechanisms of action, neural substrates, and clinical outcomes.

17.
Neuropsychiatr Dis Treat ; 15: 1061-1075, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31114210

RESUMO

Tourette's syndrome (TS) is a neurodevelopmental disorder that comprises vocal and motor tics associated with a high frequency of psychiatric comorbidities, which has an important impact on quality of life. The onset is mainly in childhood and the symptoms can either fade away or require pharmacological therapies associated with cognitive-behavior therapies. In rare cases, patients experience severe and disabling symptoms refractory to conventional treatments. In these cases, deep brain stimulation (DBS) can be considered as an interesting and effective option for symptomatic control. DBS has been studied in numerous trials as a therapy for movement disorders, and currently positive data supports that DBS is partially effective in reducing the motor and non-motor symptoms of TS. The average response, mostly from case series and prospective cohorts and only a few controlled studies, is around 40% improvement on tic severity scales. The ventromedial thalamus has been the preferred target, but more recently the globus pallidus internus has also gained some notoriety. The mechanism by which DBS is effective on tics and other symptoms in TS is not yet understood. As refractory TS is not common, even reference centers have difficulties in performing large controlled trials. However, studies that reproduce the current results in larger and multicenter randomized controlled trials to improve our knowledge so as to support the best target and stimulation settings are still lacking. This article will discuss the selection of the candidates, DBS targets and mechanisms on TS, and clinical evidence to date reviewing current literature about the use of DBS in the treatment of TS.

18.
Exp Neurol ; 318: 12-21, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31028827

RESUMO

Pain is a common nonmotor symptom of Parkinson's disease (PD) that remains neglected and misunderstood. Elucidating the nondopaminergic circuitry may be key to better understanding PD and improving current treatments. We investigated the role of monoamines in nociceptive behavior and descending analgesic circuitry in a rat 6-hydroxydopamine (6-OHDA)-induced PD model and explored the resulting motor dysfunctions and inflammatory responses. Rats pretreated with noradrenaline and serotonin reuptake inhibitors were given unilateral striatal 6-OHDA injections and evaluated for mechanical hyperalgesia and motor impairments. Through immunohistochemistry, the number and activation of neurons, and the staining for astrocytes, microglia and enkephalin were evaluated in specific brain structures and the dorsal horn of the spinal cord. The PD model induced bilateral mechanical hyperalgesia that was prevented by reuptake inhibitors in the paw contralateral to the lesion. Reuptake inhibitors also prevented postural immobility and asymmetric rotational behavior in PD rats without interfering with dopaminergic neuron loss or glial activation in the substantia nigra. However, the inhibitors changed the periaqueductal gray circuitry, protected against neuronal impairment in the locus coeruleus and nucleus raphe magnus, and normalized spinal enkephalin and glial staining in lesioned rats. These data indicate that the preservation of noradrenergic and serotonergic systems regulates motor responses and nociceptive circuitry during PD not by interfering directly with nigral lesions but by modulating the opioid system and glial response in the spinal cord. Taken together, these results suggest that nondopaminergic circuitry is essential to the motor and nonmotor symptoms of PD and must be further investigated.


Assuntos
Vias Neurais/metabolismo , Norepinefrina/metabolismo , Dor/metabolismo , Doença de Parkinson/metabolismo , Serotonina/metabolismo , Animais , Modelos Animais de Doenças , Hiperalgesia/etiologia , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Vias Neurais/patologia , Dor/etiologia , Dor/patologia , Doença de Parkinson/complicações , Doença de Parkinson/patologia , Ratos
19.
Surg J (N Y) ; 5(1): e8-e13, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30838335

RESUMO

Introduction Surgical treatment of brain tumors in eloquent areas has always been considered a major challenge because removal-related cortical damage can cause serious functional impairment. However, few studies have investigated the association between small craniotomies and the higher risk of incidence of motor deficits and prolonged recovery time. Here, we analyzed neurologic deficits and the prognostic variables after surgery guided by navigation for motor cortex tumors under general anesthesia. Methods This was a prospective study that included 47 patients with tumors in the precentral gyrus. All surgeries were performed with neuronavigation and cortical mapping, with direct electrical stimulation of the motor cortex. We evaluated the prognostic evolution of patients with pre- and postoperative Karnofsky Performance Scale using the Eastern Cooperative Oncology Group scale. Results Complete resection was verified in all 18 cases of metastasis, 13 patients with glioblastoma multiforme, and 5 patients with low-grade gliomas. An analysis of the motor deficits revealed that 11 patients experienced worsening of the deficit on the first day after surgery. Only four patients developed new deficits in the immediate postoperative period, and these improved after 3 weeks. After 3 months, only two patients had deficits that were worse those experienced prior to surgery; both patients had glioblastoma multiforme. Conclusion In our series, motor deficits prior to surgery were the most important factors associated with persistent postoperative deficits. Small craniotomy with navigation associated with intraoperative brain mapping allowed a safe resection and motor preservation in patients with motor cortex brain tumor.

20.
J Neurosurg ; 132(3): 717-720, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30835692

RESUMO

Hypothalamic deep brain stimulation (DBS) has been used for more than a decade to treat cluster headache (CH) but its mechanisms remain poorly understood. The authors have successfully treated a patient with CH using hypothalamic DBS and found that the contact used for chronic stimulation was located in a white matter region posterior to the mammillary bodies. Fiber tracts crossing that region were the medial forebrain bundle and those interconnecting the hypothalamus and brainstem, including the dorsal longitudinal fasciculus. Because the stimulation of axons is an important mechanism of DBS, some of its clinical effects in CH may be related to the stimulation of fibers interconnecting the hypothalamus and brainstem.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...