Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Blood Cells Mol Dis ; 104: 102799, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37839173

RESUMO

Myeloproliferative neoplasms (MPN) are consolidated as a relevant group of diseases derived from the malfunction of the hematopoiesis process and have as a particular attribute the increased proliferation of myeloid lineage. Among these, chronic neutrophilic leukemia (CNL) is distinguished, caused by the T618I mutation of the CSF3R gene, a trait that generates ligand-independent receptor activation and downstream JAK2/STAT signaling. Previous studies reported that mutations in BCR::ABL1 and JAK2V617F increased the expression of the aurora kinase A (AURKA) and B (AURKB) in Ba/F3 cells and their pharmacological inhibition displays antineoplastic effects in human BCR::ABL1 and JAK2V617F positive cells. Delimiting the current scenario, aspects related to the AURKA and AURKB as a potential target in CSF3RT618I-driven models is little known. In the present study, the cellular and molecular effects of pharmacological inhibitors of aurora kinases, such as aurora A inhibitor I, AZD1152-HQPA, and reversine, were evaluated in Ba/F3 expressing the CSF3RT618I mutation. AZD1152-HQPA and reversine demonstrated antineoplastic potential, causing a decrease in cell viability, clonogenicity, and proliferative capacity. At molecular levels, all inhibitors reduced histone H3 phosphorylation, aurora A inhibitor I and reversine reduced STAT5 phosphorylation, and AZD1152-HQPA and reversine induced PARP1 cleavage and γH2AX expression. Reversine more efficiently modulated genes associated with cell cycle and apoptosis compared to other drugs. In summary, our findings shed new insights into the use of AURKB inhibitors in the context of CNL.


Assuntos
Antineoplásicos , Aurora Quinase A , Humanos , Aurora Quinase A/metabolismo , Quinazolinas/farmacologia , Organofosfatos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Receptores de Fator Estimulador de Colônias
2.
Toxicol In Vitro ; 83: 105384, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35568132

RESUMO

Myeloproliferative neoplasms (MPN) belong to a group of clonal diseases of hematopoietic stem cells characterized by aberrant proliferation of mature myeloid lineages. The constitutive activation of the JAK2/STAT signaling pathway is now well established to play a central role in MPN pathogenesis; however, accumulating evidence now indicates that the IGF1R-mediated signaling pathway contributes to the maintenance of the malignant phenotype. Studies using inhibitors of IGF1-mediated signaling have reported cytotoxic effects in cellular and murine models of MPN, but no consensus has been reached regarding the potency and efficacy of inhibitors of the IGF1R-related pathway in this context. In the present study, we compared the potency and efficacy of three inhibitors of IGF1R-related pathways in a JAK2V617F-driven cellular model. These inhibitors (NT157, OSI-906, and NVP-AEW54) present antineoplastic activity with similar efficacy in Ba/F3 JAK2V617F cells, with NT157 showing the greatest potency. Both the induction of apoptosis and reduction in cell proliferation were associated with the observed reduction in cell viability. Downregulation of JAK2/STAT signaling was an advantageous off-target effect of all three inhibitors. These preclinical studies reinforce the potential of the IGF1R-related pathway as a therapeutic target in MPN.


Assuntos
Antineoplásicos , Transtornos Mieloproliferativos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Proliferação de Células , Janus Quinase 2/metabolismo , Camundongos , Mutação , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais
3.
Invest New Drugs ; 40(3): 576-585, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35015172

RESUMO

BACKGROUND: Myeloproliferative neoplasms (MPN) are disorders characterized by an alteration at the hematopoietic stem cell (HSC) level, where the JAK2 mutation is the most common genetic alteration found in classic MPN (polycythemia vera, essential thrombocythemia, and primary myelofibrosis). We and others previously demonstrated that metformin reduced splenomegaly and platelets counts in peripheral blood in JAK2V617F pre-clinical MPN models, which highlighted the antineoplastic potential of biguanides for MPN treatment. Phenformin is a biguanide that has been used to treat diabetes, but was withdrawn due to its potential to cause lactic acidosis in patients. AIMS: We herein aimed to investigate the effects of phenformin in MPN disease burden and stem cell function in Jak2V617F-knockin MPN mice. RESULTS: In vitro phenformin treatment reduced cell viability and increased apoptosis in SET2 JAK2V67F cells. Long-term treatment with 40 mg/kg phenformin in Jak2V617F knockin mice increased the frequency of LSK, myeloid progenitors (MP), and multipotent progenitors (MPP) in the bone marrow. Phenformin treatment did not affect peripheral blood counts, spleen weight, megakaryocyte count, erythroid precursors frequency, or ex vivo clonogenic capacity. Ex vivo treatment of bone marrow cells from Jak2V617F knockin mice with phenformin did not affect hematologic parameters or engraftment in recipient mice. CONCLUSIONS: Phenformin increased the percentages of LSK, MP, and MPP populations, but did not reduce disease burden in Jak2V617F-knockin mice. Additional studies are necessary to further understand the effects of phenformin on early hematopoietic progenitors.


Assuntos
Transtornos Mieloproliferativos , Policitemia Vera , Animais , Medula Óssea , Modelos Animais de Doenças , Humanos , Janus Quinase 2 , Camundongos , Mutação , Transtornos Mieloproliferativos/tratamento farmacológico , Fenformin/farmacologia , Fenformin/uso terapêutico , Policitemia Vera/genética
4.
PLoS One ; 15(11): e0241546, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33151992

RESUMO

Here we present and analyze the complete genome of Alcaligenes faecalis strain Mc250 (Mc250), a bacterium isolated from the roots of Mimosa calodendron, an endemic plant growing in ferruginous rupestrian grasslands in Minas Gerais State, Brazil. The genome has 4,159,911 bp and 3,719 predicted protein-coding genes, in a single chromosome. Comparison of the Mc250 genome with 36 other Alcaligenes faecalis genomes revealed that there is considerable gene content variation among these strains, with the core genome representing only 39% of the protein-coding gene repertoire of Mc250. Mc250 encodes a complete denitrification pathway, a network of pathways associated with phenolic compounds degradation, and genes associated with HCN and siderophores synthesis; we also found a repertoire of genes associated with metal internalization and metabolism, sulfate/sulfonate and cysteine metabolism, oxidative stress and DNA repair. These findings reveal the genomic basis for the adaptation of this bacterium to the harsh environmental conditions from where it was isolated. Gene clusters associated with ectoine, terpene, resorcinol, and emulsan biosynthesis that can confer some competitive advantage were also found. Experimental results showed that Mc250 was able to reduce (~60%) the virulence phenotype of the plant pathogen Xanthomonas citri subsp. citri when co-inoculated in Citrus sinensis, and was able to eradicate 98% of juveniles and stabilize the hatching rate of eggs to 4% in two species of agricultural nematodes. These results reveal biotechnological potential for the Mc250 strain and warrant its further investigation as a biocontrol and plant growth-promoting bacterium.


Assuntos
Alcaligenes faecalis/genética , Citrus/microbiologia , Genoma Bacteriano , Sequenciamento Completo do Genoma , Alcaligenes faecalis/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Sequência de Bases , Citrus/parasitologia , DNA Circular/genética , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Ilhas Genômicas/genética , Ferro/metabolismo , Metais Pesados/toxicidade , Mimosa/microbiologia , Nematoides/fisiologia , Fenóis/metabolismo , Filogenia
5.
Sci Rep ; 9(1): 18006, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31784663

RESUMO

Serratia liquefaciens strain FG3 (SlFG3), isolated from the flower of Stachytarpheta glabra in the Brazilian ferruginous fields, has distinctive genomic, adaptive, and biotechnological potential. Herein, using a combination of genomics and molecular approaches, we unlocked the evolution of the adaptive traits acquired by S1FG3, which exhibits the second largest chromosome containing the largest conjugative plasmids described for Serratia. Comparative analysis revealed the presence of 18 genomic islands and 311 unique protein families involved in distinct adaptive features. S1FG3 has a diversified repertoire of genes associated with Nonribosomal peptides (NRPs/PKS), a complete and functional cluster related to cellulose synthesis, and an extensive and functional repertoire of oxidative metabolism genes. In addition, S1FG3 possesses a complete pathway related to protocatecuate and chloroaromatic degradation, and a complete repertoire of genes related to DNA repair and protection that includes mechanisms related to UV light tolerance, redox process resistance, and a laterally acquired capacity to protect DNA using phosphorothioation. These findings summarize that SlFG3 is well-adapted to different biotic and abiotic stress situations imposed by extreme conditions associated with ferruginous fields, unlocking the impact of the lateral gene transfer to adjust the genome for extreme environments, and providing insight into the evolution of prokaryotes.


Assuntos
Aclimatação/genética , Evolução Biológica , Extremófilos/genética , Lamiales/microbiologia , Serratia liquefaciens/genética , Brasil , Ambientes Extremos , Extremófilos/isolamento & purificação , Flores/microbiologia , Genes Bacterianos , Ilhas Genômicas , Genômica , Filogenia , Plasmídeos/genética , Serratia liquefaciens/isolamento & purificação
6.
Front Microbiol ; 10: 2361, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681223

RESUMO

Xanthomonas citri pv. aurantifolii pathotype B (XauB) and pathotype C (XauC) are the causative agents respectively of citrus canker B and C, diseases of citrus plants related to the better-known citrus canker A, caused by Xanthomonas citri pv. citri. The study of the genomes of strains of these related bacterial species has the potential to bring new understanding to the molecular basis of citrus canker as well as their evolutionary history. Up to now only one genome sequence of XauB and only one genome sequence of XauC have been available, both in draft status. Here we present two new genome sequences of XauB (both complete) and five new genome sequences of XauC (two complete). A phylogenomic analysis of these seven genome sequences along with 24 other related Xanthomonas genomes showed that there are two distinct and well-supported major clades, the XauB and XauC clade and the Xanthomonas citri pv. citri clade. An analysis of 62 Type III Secretion System effector genes showed that there are 42 effectors with variable presence/absence or pseudogene status among the 31 genomes analyzed. A comparative analysis of secretion-system and surface-structure genes showed that the XauB and XauC genomes lack several key genes in pathogenicity-related subsystems. These subsystems, the Types I and IV Secretion Systems, and the Type IV pilus, therefore emerge as important ones in helping explain the aggressiveness of the A type of citrus canker and the apparent dominance in the field of the corresponding strain over the B and C strains.

7.
Front Microbiol, v. 10, 2361, out. 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4122

RESUMO

Xanthomonas citri pv. aurantifolii pathotype B (XauB) and pathotype C (XauC) are the causative agents respectively of citrus canker B and C, diseases of citrus plants related to the better-known citrus canker A, caused by Xanthomonas citri pv. citri. The study of the genomes of strains of these related bacterial species has the potential to bring new understanding to the molecular basis of citrus canker as well as their evolutionary history. Up to now only one genome sequence of XauB and only one genome sequence of XauC have been available, both in draft status. Here we present two new genome sequences of XauB (both complete) and five new genome sequences of XauC (two complete). A phylogenomic analysis of these seven genome sequences along with 24 other related Xanthomonas genomes showed that there are two distinct and well-supported major clades, the XauB and XauC clade and the Xanthomonas citri pv. citri clade. An analysis of 62 Type III Secretion System effector genes showed that there are 42 effectors with variable presence/absence or pseudogene status among the 31 genomes analyzed. A comparative analysis of secretion-system and surface-structure genes showed that the XauB and XauC genomes lack several key genes in pathogenicity-related subsystems. These subsystems, the Types I and IV Secretion Systems, and the Type IV pilus, therefore emerge as important ones in helping explain the aggressiveness of the A type of citrus canker and the apparent dominance in the field of the corresponding strain over the B and C strains.

8.
Front. Microbiol. ; 10: 2361, 2019.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17265

RESUMO

Xanthomonas citri pv. aurantifolii pathotype B (XauB) and pathotype C (XauC) are the causative agents respectively of citrus canker B and C, diseases of citrus plants related to the better-known citrus canker A, caused by Xanthomonas citri pv. citri. The study of the genomes of strains of these related bacterial species has the potential to bring new understanding to the molecular basis of citrus canker as well as their evolutionary history. Up to now only one genome sequence of XauB and only one genome sequence of XauC have been available, both in draft status. Here we present two new genome sequences of XauB (both complete) and five new genome sequences of XauC (two complete). A phylogenomic analysis of these seven genome sequences along with 24 other related Xanthomonas genomes showed that there are two distinct and well-supported major clades, the XauB and XauC clade and the Xanthomonas citri pv. citri clade. An analysis of 62 Type III Secretion System effector genes showed that there are 42 effectors with variable presence/absence or pseudogene status among the 31 genomes analyzed. A comparative analysis of secretion-system and surface-structure genes showed that the XauB and XauC genomes lack several key genes in pathogenicity-related subsystems. These subsystems, the Types I and IV Secretion Systems, and the Type IV pilus, therefore emerge as important ones in helping explain the aggressiveness of the A type of citrus canker and the apparent dominance in the field of the corresponding strain over the B and C strains.

9.
World J Microbiol Biotechnol ; 34(10): 156, 2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-30284648

RESUMO

Microorganisms associated with plants have a great biotechnological potential, but investigations of these microorganisms associated with native plants in peculiar environments has been incipient. The objective of this study was to analyze the plant growth-promoting bacteria potential of cultivable bacteria associated with rare plants from the ferruginous rocky fields of the Brazilian Iron Quadrangle. The roots and rhizospheres of nine endemic plants species and samples of a root found in a lateritiric duricrust (canga) cave were collected, the culturable bacteria isolated and prospected for distinct biotechnological and ecological potentials. Out of the 148 isolates obtained, 8 (5.4%) showed potential to promote plant growth, whereas 4 (2.7%) isolates acted as biocontrol agents against Xanthomonas citri pathotype A (Xac306), reducing the cancrotic lesions by more than 60% when co-inoculated with this phytopathogen in Citrus sinensis plants. Moreover, other 4 (2.7%) isolates were classified as potential bioremediation agents, being able to withstand high concentrations of arsenite (5 mM As3+) and arsenate (800 mM As5+), by removing up to 35% and 15% of this metalloid in solution, respectively. These same four isolates had a positive influence on the growth of both the roots and the aerial parts when inoculated with tomato seeds in the soil contaminated with arsenic. This is the first time that an investigation highlights the potentialities of bacteria associated with rare plants of ferruginous rocky fields as a reservoir of microbiota of biotechnological and ecological interest, highlighting the importance of conservation of this area that is undergoing intense anthropic activity.


Assuntos
Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Biotecnologia , Desenvolvimento Vegetal/fisiologia , Raízes de Plantas/microbiologia , Rizosfera , Amilases/metabolismo , Arseniatos/metabolismo , Arsênio/metabolismo , Arsênio/farmacologia , Arsenitos/metabolismo , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Biodegradação Ambiental , Biodiversidade , Agentes de Controle Biológico , Brasil , Resistência a Medicamentos , Fertilizantes , Cianeto de Hidrogênio/metabolismo , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Microbiota/fisiologia , Fixação de Nitrogênio , Peptídeo Hidrolases/metabolismo , Fosfatos/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Patologia Vegetal , Raízes de Plantas/química , RNA Ribossômico 16S/genética , Sideróforos/metabolismo , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Xanthomonas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...