Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fitoterapia ; 176: 106027, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38777073

RESUMO

Cordiera myrciifolia is an abundant species in Northeast Brazil that presents metabolites of biological/therapeutic interest. From this perspective, the present study aimed to investigate the chemical constituents and evaluate the in vitro antimicrobial activity of hexane (HECM) and ethanolic (EECM) extracts of C. myrciifolia leaves. The extracts were analyzed by chromatographic techniques (GC and UPLC) coupled with mass spectrometry. The antimicrobial activity of the extracts and the extracts combined with conventional drugs was evaluated by microdilution. The in vitro effect of the treatments on Candida's morphological transition was verified through cultivation in humid chambers. In HECM, 11 constituents including fatty acids, and triterpenes, including phytosterols, alkanes, tocols, and primary alcohols were identified. Triterpenes represented >40% of the identified constituents, with Lupeol being the most representative. In EECM, 13 constituents were identified, of which eight belonged to the class of flavonoids. High antibacterial activity of HECM was detected against Escherichia coli and Staphylococcus aureus, with Minimum Inhibitory Concentrations of 8 and 16 µg/mL, respectively. The combined activity was more effective when combined with Norfloxacin and Imipenem. In anti-Candida activity, the IC50 of the extracts ranged from 36.6 to 129.1 µg/mL. There was potentiating effect when associated with Fluconazole. Both extracts inhibited the filamentous growth of C. tropicalis at a concentration of 512 µg/mL. C. myrciifolia extracts prove to be candidates for the development of new therapeutic formulations to treat bacterial and fungal infections.


Assuntos
Anti-Infecciosos , Bactérias , Fungos , Extratos Vegetais , Rubiaceae , Folhas de Planta/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Rubiaceae/química , Concentração Inibidora 50 , Cromatografia Gasosa-Espectrometria de Massas , Testes de Sensibilidade Microbiana , Bactérias/efeitos dos fármacos , Fungos/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia
2.
Fundam Clin Pharmacol ; : e13007, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738393

RESUMO

Candida spp. is an opportunistic pathogen capable of causing superficial to invasive infections. Morphological transition is one of the main virulence factors of this genus and, therefore, is an important variable to be considered in pharmacological interventions. Riparins I, II, III, and IV are alkamide-type alkaloids extracted from the unripe fruit of Aniba riparia, whose remarkable pharmacological properties were previously demonstrated. This work aimed to evaluate in silico and in vitro the inhibitory effects of Riparins on the morphological transition of Candida albicans, Candida tropicalis, and Candida krusei. Molecular docking was applied to analyze the inhibitory effects of riparins against proteins such as N-acetylglucosamine, CYP-51, and protein kinase A (PKA) using the Ramachandran plot. The ligands were prepared by MarvinSketch and Spartan software version 14.0, and MolDock Score and Rerank Score were used to analyze the affinity of the compounds. In vitro analyses were performed by culturing the strains in humid chambers in the presence of riparins or fluconazole (FCZ). The morphology was observed through optical microscopy, and the size of the hyphae was determined using the ToupView software. In silico analysis demonstrated that all riparins are likely to interact with the molecular targets: GlcNAc (>50%), PKA (>60%), and CYP-51 (>70%). Accordingly, in vitro analysis showed that these compounds significantly inhibited the morphological transition of all Candida strains. In conclusion, this study demonstrated that riparins inhibit Candida morphological transition and, therefore, can be used to overcome the pathogenicity of this genus.

3.
Chem Biodivers ; : e202400444, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670923

RESUMO

Fungal infections are a public health problem that mainly affects immunosuppressed people, Candida spp. have been responsible for most sources of contamination and invasive fungal infections described around the world. The need arises to find new therapeutic approaches to combat growing infections. Plants and natural products have been considered a valuable source for discovering new molecules with active ingredients. Diosgenin is a sapogenin found in the families of Leguminosae and Dioscoreaceae, it is obtained mainly from the dioscin saponin through the hydrolysis method, it is a phytochemical that has been highlighted in the treatment of various diseases, as well as in combating microbial resistance. The present study aimed to evaluate the susceptibility of fungal strains to diosgenin, as well as verify the association with the reference drug and evaluate the inhibition of the virulence factor through morphological changes in the yeast state to the filamentous form of hyphae and pseudohyphae in strains of Candida albicans, Candida tropicalis and Candida krusei using the broth microdilution method and microculture technique. Antifungal assays revealed that diosgenin was not able to inhibit the growth of the tested strains. However, it was able to inhibit the fungal dimorphism of the strains evaluated, however further studies are recommended to verify its effectiveness against other virulence factors.

4.
Acta Trop ; 253: 107168, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38432404

RESUMO

The present article aims to evaluate the antifungal and antivirulence effect of the phytoconstituent Limonene against Candida spp. Antifungal assays were performed, where the concentration capable of inhibiting 50 % of fungal growth, the growth inhibition curve, the minimum fungicidal concentration, the evaluation of the modifying effect with fluconazole, the inhibitory effect of the substances on the morphological transition of Candida spp. and the statistical analysis of the results were determined. With this study, it was seen that limonene demonstrated growth inhibition for the strains tested and when associated the natural compound with Fluconazole, there was potentiation of the effect of the drug, since the inhibition of growth by the combination occurred at lower concentrations against all strains tested, when compared to the drug alone, which inhibited growth at the highest concentration. In the test to determine the Minimum Fungicidal Concentration of the products tested alone and in combination, it was found that in the case of Candida strains, growth inhibition by limonene occurred at a concentration of 1024 µg/mL. For Fluconazole, growth impairment ranged from > 1024 µg/mL to 256 µg/mL for the strains. And when combined, limonene potentiated the action of FCZ, making fungal colonization unfeasible at concentrations below 1024 µg/mL. Regarding the morphological transition from yeast to hyphae, limonene was used at concentrations of 1024 µg/mL and 512 µg/mL, and it was found that, for CA and CK, the filaments were reduced in number and size at the highest concentration and against CT, the morphological transition from yeast to hyphae/pseudohyphae was totally inhibited, and if compared to the growth control, limonene was able to reduce fungal growth at concentrations greater than 512 µg/mL. This compound has antimicrobial activity described, due to its ability to interfere in the gene expression of the fungus, the limited therapeutic options and the recent emergence of multidrug-resistant Candida species represent a significant challenge for human medicine and highlight the need for new therapeutic approaches, and in this study a great potential of limonene was revealed in relation to the perspective of increasing the efficiency of commercial drug. This work can bring an important contribution to the scientific database, while emphasizing that in-depth studies and tests on the subject, in order to better investigate its effectiveness and mechanisms by which they exert their effects, are still necessary.


Assuntos
Antifúngicos , Candida , Humanos , Antifúngicos/farmacologia , Fluconazol/farmacologia , Limoneno/farmacologia , Saccharomyces cerevisiae , Virulência , Fungos , Testes de Sensibilidade Microbiana
5.
Microb Pathog ; 180: 106147, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37169312

RESUMO

This study aimed to evaluate the antibiotic effects of the fixed oils of Acrocomia aculeata (FOAA) and Syagrus cearenses (FOSC) against the bacterial strains and the fungi strains of the genus Candida spp. The method of serial microdilution using different concentrations was used for measuring the individual biological activity of the fixed oils. The fixed oil of A. aculeata showed the presence of oleic acid (24.36%), while the oil of S. cearensis displayed the content of myristic acid (18.29%), compounds detected in high concentration. The combination FOAA + Norfloxacin, and FOSC + Norfloxacin showed antibacterial activity against E. coli and S. aureus strains, demonstrating possible synergism and potentiation of the antibiotic action against multidrug-resistant strains. The combination FOAA + Fluconazole displayed a significant effect against Candida albicans (IC50 = 15.54), C. krusei (IC50 = 78.58), and C. tropicalis (IC50 = 1588 µg/mL). Regarding FOSC + Fluconazole, it was also observed their combined effect against the strains of C. albicans (IC50 = 3385 µg/mL), C. krusei (IC50 = 26.67 µg/mL), and C. tropicalis (IC50 = 1164 µg/mL). The findings of this study showed a significant synergism for both fixed oils tested when combined with the antibiotic.


Assuntos
Anti-Infecciosos , Arecaceae , Fluconazol/farmacologia , Arecaceae/química , Norfloxacino/farmacologia , Escherichia coli , Staphylococcus aureus , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Candida albicans , Óleos de Plantas/farmacologia , Antibacterianos/farmacologia , Candida tropicalis , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Antifúngicos/química
6.
Microb Pathog ; 180: 106129, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37119940

RESUMO

The increased resistance of microorganisms to antimicrobial drugs makes it necessary to search for new active compounds, such as chalcones. Their simple chemical structure makes them molecules easy to synthesize. Therefore, the aim of this study was to evaluate the antimicrobial and potentiating activity of antibiotics and antifungals by synthetic chalcones against strains of Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans and Candida tropicalis. The synthesis of chalcones was carried out by Claisen-Schimidt aldol condensation. Nuclear Magnetic Resonance (NMR) and Gas Chromatography Coupled to Mass Spectrometry (GC/MS) were also performed. Microbiological tests were performed by the broth microdilution method, using gentamicin, norfloxacin and penicillin as standard drugs for the antibacterial assay, and fluconazole for the antifungal assay. Three chalcones were obtained (1E,4E)-1,5-diphenylpenta-1,4-dien-3-one (DB-Acetone), (1E,3E,6E,8E)-1,9-diphenylnone-1,3,6,8-tetraen-5-one (DB-CNM), (1E,4E)-1,5-bis (4-methoxyphenyl) penta-1,4-dien-3-one (DB-Anisal). The compound DB-Acetone was able to inhibit P. aeruginosa ATCC 9027 at a concentration of 1.4 × 102 µM (32 µg/mL), while DB-CNM and DB-Anisal inhibited the growth of S. aureus ATCC 25923 at 17.88 × 102 µM and 2.71 × 101 µM (512 µg/mL and 8 µg/mL) respectively. In the combined activity, DB-Anisal was able to potentiate the effect of the three antibacterial drugs tested against E. coli 06, norfloxacin (128 for 4 µg/mL ±1) against P. aeruginosa 24 and penicillin (1,024 for 16 µg/mL ±1) against S. aureus 10. In antifungal assays, chalcones were not able to inhibit the growth of fungal strains tested. However, both showed potentiating activity with fluconazole, ranging from 8.17 x 10-1 µM (0.4909 µg/mL) to 2.35 µM (13.96 µg/mL). It is concluded that synthetic chalcones have antimicrobial potential, demonstrating good intrinsic activity against fungi and bacteria, in addition to potentiating the antibiotics and antifungal tested. Further studies are needed addressing the mechanisms of action responsible for the results found in this work.


Assuntos
Anti-Infecciosos , Chalconas , Antifúngicos/química , Fluconazol/farmacologia , Chalconas/farmacologia , Chalconas/química , Staphylococcus aureus , Norfloxacino/farmacologia , Escherichia coli , Acetona/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/química , Candida albicans , Penicilinas/farmacologia , Testes de Sensibilidade Microbiana
7.
Arch Microbiol ; 204(6): 346, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35608680

RESUMO

Lectins participate in the defense against microorganisms and in signaling the damage caused by pathogens to the cell surface and/or intracellular in plants. This study aims to analyze the antifungal potential of lectins extracted from seeds of Canavalia ensiformis (L.) DC and Canavalia rosea (Sw.) DC, against Candida albicans and Candida tropicalis. The antimicrobial tests were performed by microdilution against Candida spp. The test to verify the combined lectin/fluconazole effect was performed using subinhibitory concentrations of lectins and with antifungal ranging from 0.5 to 512 µg/mL. The ability to inhibit the morphological transition of Candida spp. was evaluated by microcultivation in a moist chamber. The results of the minimum inhibitory concentration revealed no antifungal activity against the tested strains. However, lectins modified the action of fluconazole, reducing the IC50 of the drug against C. albicans. Lectins were also able to discretely modulate the morphological transition of the tested strains.


Assuntos
Candida albicans , Candida tropicalis , Antifúngicos/farmacologia , Canavalia/metabolismo , Candida/metabolismo , Concanavalina A , Fluconazol/farmacologia , Lectinas/farmacologia , Testes de Sensibilidade Microbiana , Plâncton
8.
Pharmaceutics ; 14(4)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35456532

RESUMO

(1) Background: Candida is a genus of yeasts with notable pathogenicity and significant ability to develop antimicrobial resistance. Gossypium hirsutum L., a medicinal plant that is traditionally used due to its antimicrobial properties, has demonstrated significant antifungal activity. Therefore, this study investigated the chemical composition and anti-Candida effects of aqueous (AELG) and hydroethanolic (HELG) extracts obtained from the leaves of this plant. (2) Methods: The extracts were chemically characterized by UPLC-QTOF-MS/MS, and their anti-Candida activities were investigated by analyzing cell viability, biofilm production, morphological transition, and enhancement of antifungal resistance. (3) Results: The UPLC-QTOF-MS/MS analysis revealed the presence of twenty-one compounds in both AELG and HELG, highlighting the predominance of flavonoids. The combination of the extracts with fluconazole significantly reduced its IC50 values against Candida albicans INCQS 40006, Candida tropicalis INCQS 40042, and C. tropicalis URM 4262 strains, indicating enhanced antifungal activity. About biofilm production, significant inhibition was observed only for the AELG-treated C. tropicalis URM 4262 strain in comparison with the untreated control. Accordingly, this extract showed more significant inhibitory effects on the morphological transition of the INCQS 40006 and URM 4387 strains of C. albicans (4) Conclusions: Gossypium hirsutum L. presents promising antifungal effects, that may be potentially linked to the combined activity of chemical constituents identified in its extracts.

9.
Int J Biol Macromol ; 195: 163-178, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34896466

RESUMO

Lectins are biologically versatile biomolecules with remarkable antimicrobial effects, notably against bacteria, fungi and protozoa, in addition to modulating host immunity. For this, the lectins bind to carbohydrates on the surface of the pathogen, which can cause damage to the cell wall and prevent the attachment of microorganisms to host cells. Thus, this study intends to review the biological activities of lectins, with an emphasis on antimicrobial activity. Lectins of plant stood out for its antimicrobial effects, demonstrating that they act against a variety of strains, where in vitro were able to inhibit their development and affect their morphology. In vivo, they modulated host immunity, signaling and activating defense cells. Some of these lectins were capable to modulate the action of antibiotics, indicating their potential to minimize the antibiotic resistance. The results suggest that lectins have antimicrobial activity with potential to be used in drug development.


Assuntos
Anti-Infecciosos/farmacologia , Lectinas de Plantas/farmacologia , Carboidratos/química , Desenvolvimento de Medicamentos , Resistência Microbiana a Medicamentos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...