RESUMO
There are inconclusive claims in the scientific literature that the species Trema micranthum, widely distributed throughout the Brazilian territory, may produce phytocannabinoids, potentially serving as an alternative to Cannabis sativa. In this study, we conducted a comprehensive investigation to assess the presence of phytocannabinoids in two Trema micranthum samples collected in the Midwest region of Brazil. In trying to detect cannabinoids in T. micranthum, a recommended cannabis screening test was employed, the Fast Blue BB Salt (FBBBS) colorimetric assay, followed by thin-layer chromatography (TLC) and instrumental techniques: high-performance liquid chromatography coupled to diode array detector (HPLC-DAD) and gas chromatography coupled to mass spectrometry (GC-MS). When employed without chloroform extraction, the FBBBS reagent yielded positive results for extracts from all parts of T. micranthum (leaves, branches, fruits, and inflorescences). However, these initial positive results from the FBBBS test, suggesting the presence of cannabinoids, were not corroborated by FBBBS followed by chloroform extraction, TLC, or the instrumental techniques used in this study. These additional outcomes suggest that the positive FBBBS test results were likely due to the presence of other phenolic compounds rather than phytocannabinoids. For example, the presence of vitexin-like compounds in T. micranthum extracts might explain the positive FBBBS test results. Therefore, new assertions that T. micranthum produces cannabinoids will require the support of more selective experiments to avoid false-positive claims based on less selective screening tests.
RESUMO
Aim: To review the available literature about heterologous expression of fungal L-asparaginase (L-ASNase). Materials & methods: A search was conducted across PubMed, Science Direct, Scopus and Web of Science databases; 4172 citations were identified and seven articles were selected. Results: The results showed that heterologous expression of fungal L-ASNase was performed mostly in bacterial expression systems, except for a study that expressed L-ASNase in a yeast system. Only three publications reported the purification and characterization of the enzyme. Conclusion: The information reported in this systematic review can contribute significantly to the recognition of the importance of biotechnological techniques for L-ASNase production.
Asparaginase is a common treatment for the most common type of leukemia in children. These treatments generally use asparaginase sourced from bacteria. Some people can experience bad reactions to these treatments. One way that has been explored to avoid this is to use asparaginase sourced from fungi because they are more similar to humans. However, fungi produce less asparaginase than bacteria. This review looks into ways that the production of fungal asparaginases can be made more productive.
Assuntos
Antineoplásicos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Asparaginase/genética , Asparaginase/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Bactérias/metabolismo , Antineoplásicos/uso terapêuticoRESUMO
We investigated four Cerrado plant species, i.e., Cheiloclinium cognatum (Miers) A.C.Sm, Guazuma ulmifolia Lam., Hancornia speciosa Gomes, and Hymenaea stigonocarpa Mart. ex Hayne, against acetaminophen toxicity using an in vitro assay with HepG2 cells. The activity against acetaminophen toxicity was evaluated using different protocols, i.e., pre-treatment, co-treatment, and post-treatment of the cells with acetaminophen and the plant extracts. HepG2 cell viability after treatment with acetaminophen was 39.61 ± 5.59% of viable cells. In the pre-treatment protocol, the extracts could perform protection with viability ranging from 50.02 ± 15.24% to 78.75 ± 5.61%, approaching the positive control silymarin with 75.83 ± 5.52%. In the post-treatment protocol, all extracts and silymarin failed to reverse the acetaminophen damage. In the co-treatment protocol, the extracts showed protection ranging from 50.92 ± 11.14% to 68.50 ± 9.75%, and silymarin showed 77.87 ± 4.26%, demonstrating that the aqueous extracts of the species also do not increase the toxic effect of acetaminophen. This protection observed in cell viability was accompanied by a decrease in ROS. The extracts' hepatoprotection can be related to antioxidant compounds, such as rutin and mangiferin, identified using HPLC-DAD and UPLC-MS/MS. The extracts were shown to protect HepG2 cells against future APAP toxicity and may be candidates for supplements that could be used to prevent liver damage. In the concomitant treatment using the extracts with APAP, it was demonstrated that the extracts do not present a synergistic toxicity effect, with no occurrence of potentiation of toxicity. The extracts showed considerable cytoprotective effects and important antioxidant characteristics.
RESUMO
The search for new drug-producing microorganisms is one of the most promising situations in current world scientific scenarios. The use of molecular biology as well as the cloning of protein and compound genes is already well established as the gold standard method of increasing productivity. Aiming at this increase in productivity, this work aims at the cloning, purification and in silico analysis of l-asparaginase from Fusarium proliferatum in Komagataella phaffii (Pichia pastoris) protein expression systems. The l-asparaginase gene (NCBI OQ439985) has been cloned into Pichia pastoris strains. Enzyme production was analyzed via the quantification of aspartic B-hydroxamate, followed by purification on a DEAE FF ion exchange column. The in silico analysis was proposed based on the combined use of various technological tools. The enzymatic activity found intracellularly was 2.84 IU/g. A purification factor of 1.18 was observed. The in silico analysis revealed the position of five important amino acid residues for enzymatic activity, and likewise, it was possible to predict a monomeric structure with a C-score of 1.59. The production of the enzyme l-asparaginase from F. proliferatum in P. pastoris was demonstrated in this work, being of great importance for the analysis of new methodologies in search of the production of important drugs in therapy.
RESUMO
Esquamosan, a new furofuran lignan, has been isolated by bio-guided assays from the methanolic extract of the leaves of Annona squamosa L., and its structure was elucidated by spectroscopic methods. Esquamosan inhibited the rat aortic ring contraction evoked by phenylephrine in a concentration-dependent manner and showed an inhibitory effect on vasocontraction of the depolarized aorta with high-concentration potassium. The vasorelaxant effect by esquamosan could be attributed mainly to the inhibition of calcium influx from extracellular space through voltage-dependent calcium channels or receptor-operated Ca2+ channels and also partly mediated through the increased release of NO from endothelial cells. The ability of esquamosan to modify the vascular reactivity of rat aortic rings incubated with high glucose (D-glucose 55 mM) was then evaluated, and this furofuran lignan reverted the endothelium-dependent impairment effect of high glucose in rat aortic rings. The antioxidant capacity of esquamosan was assessed using DPPH and FRAP assays. Esquamosan exhibited a similar antioxidant capacity compared to ascorbic acid, which was used as a positive control. In conclusion, this lignan showed a vasorelaxant effect, free radical scavenging capacity, and potential reductive power, suggesting its potential beneficial use to treat complex cardiometabolic diseases due to free radical-mediated diseases and its calcium antagonist effect.
Assuntos
Annona , Annonaceae , Lignanas , Ratos , Animais , Vasodilatadores/farmacologia , Lignanas/farmacologia , Antioxidantes/farmacologia , Cálcio/farmacologia , Células Endoteliais , Aorta Torácica , Vasodilatação , Endotélio VascularRESUMO
The interaction potential of Cynara scolymus L., Mikania glomerata Spreng.,Rhamnus purshiana DC and Uncaria tomentosa (Willd. Ex Roem. & Schult.) with conventional drugs metabolized by the CYP3A4 metabolic route was tested in HeLa cell lines, using the in vitro model of the hPXR. The herbal medicines C. scolymus (1.5 mg/mL dry extract) did not affect the receptor. On the other hand, M. glomerata (5.5 mg/mL dry extract), R. purshiana (1.5 mg/mL dry extract), and U. tomentosa (2.0 mg/mL dry extract) showed to be hPXR agonist, suggesting a potential interaction with the conventional drugs metabolized by the same isoforms of the CYP superfamily. The results from this study contribute to the use safer and more effective of these herbal medicines.
Se evaluó el potencial de interacción de Cynara scolymus L., Mikania glomerata Spreng., Rhamnus purshiana DC y Uncaria tomentosa (Willd. Ex Roem. & Schult.) con fármacos convencionales metabolizados por la ruta metabólica CYP3A4 en líneas celulares HeLa, utilizando el modelo in vitro del hPXR. Las hierbas medicinales C. scolymus (1,5 mg/mL de extracto seco) no afectaron al receptor. Por otro lado, M. glomerata (5.5 mg/mL de extracto seco), R. purshiana (1.5 mg/mL de extracto seco) y U. tomentosa (2.0 mg/mL de extracto seco) mostraron ser agonistas de hPXR, lo que sugiere una potencial interacción con los fármacos convencionales metabolizados por las mismas isoformas de la superfamilia CYP. Los resultados de este estudio contribuyen a un uso más seguro y eficaz de estos medicamentos a base de hierbas medicinales.
Assuntos
Rhamnus , Unha-de-Gato , Cynara scolymus , Mikania , Interações Ervas-Drogas , Plantas Medicinais , Técnicas In Vitro , Indutores do Citocromo P-450 CYP3A/químicaRESUMO
Inhibition of systemic inflammation has been a beneficial strategy in treating several non-communicable diseases, which represent one of the major causes of mortality in the world. The Peroxisome Proliferator-Activated Receptors (PPAR) are interesting pharmacological targets, since they can act both through the metabolic and anti-inflammatory pathways. Morus nigra L. has flavonoids in its chemical composition with recognized anti-oxidant activity and often associated with anti-inflammatory activity. Therefore, this study aimed to evaluate the hydroethanolic extract of M. nigra leaves' ability to activate PPAR and promote anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated murine macrophage cells. The leaf extract was prepared by cold maceration, and the chemical profile was obtained by HPLC-DAD. Activation of PPAR α and γ was evaluated by the luciferase reporter assay. The anti-inflammatory activity was assessed by measuring the reactive oxygen species (ROS), nitric oxide (NO), and Tumor Necrosis Factor-α (TNF-α) in RAW 264.7 cells after stimulation with LPS from Escherichia coli. The HPLC-DAD analysis identified two major compounds: rutin and isoquercitrin. The extract showed agonist activity for the two types of PPAR, α and γ, although its major compounds, rutin and isoquercitrin, did not significantly activate the receptors. In addition, the extract significantly reduced the production of ROS, NO, and TNF-α. Treatment with the specific PPAR-α antagonist, GW 6471, was able to partially block the anti-inflammatory effect caused by the extract.
RESUMO
Hippeastrum stapfianum (Kraenzl.) R.S.Oliveira & Dutilh (Amaryllidaceae) is an endemic plant species from the Brazilian savannah with biological and pharmacological potential. This study evaluated the effects of ethanol extract from H. stapfianum leaves on acetylcholinesterase enzyme activity and the action on nuclear receptors PPAR-α and PPAR-γ. A gene reporter assay was performed to assess the PPAR agonist or antagonist activity with a non-toxic dose of H. stapfianum ethanol extract. The antioxidant capacity was investigated using DPPH⢠scavenging and fosfomolybdenium reduction assays. The identification of H. stapfianum's chemical composition was performed by gas chromatography-mass spectrometry (GC-MS) and HPLC. The ethanol extract of H. stapfianum activated PPAR-α and PPAR-γ selectively, inhibited the acetylcholinesterase enzyme, and presented antioxidant activity in an in vitro assay. The major compounds identified were lycorine, 7-demethoxy-9-O-methylhostasine, and rutin. Therefore, H. stapfianum is a potential source of drugs for Alzheimer's disease due to its ability to activate PPAR receptors, acetylcholinesterase inhibition activity, and antioxidant attributes.
RESUMO
L-asparaginase is an important enzyme in the pharmaceutical field used as treatment for acute lymphoblastic leukemia due to its ability to hydrolyze L-asparagine, an essential amino acid synthesized by normal cells, but not by neoplastic cells. Adverse effects of L-asparaginase formulations are associated with its glutaminase activity and bacterial origin; therefore, it is important to find new sources of L-asparaginase produced by eukaryotic microorganisms with low glutaminase activity. This work aimed to identify the L-asparaginase gene sequence from Penicillium sizovae, a filamentous fungus isolated from the Brazilian Savanna (Cerrado) soil with low glutaminase activity, and to biosynthesize higher yields of this enzyme in the yeast Komagataella phaffii. The L-asparaginase gene sequence of P. sizovae was identified by homology to L-asparaginases from species of Penicillium of the section Citrina: P. citrinum and P. steckii. Partial L-asparaginase from P. sizovae, lacking the periplasmic signaling sequence, was cloned, and expressed intracellularly with highest enzymatic activity achieved by a MUT+ clone cultured in BMM expression medium; a value 5-fold greater than that obtained by native L-asparaginase in P. sizovae cells. To the best of our knowledge, this is the first literature report of the heterologous production of an L-asparaginase from a filamentous fungus by a yeast.
RESUMO
Candida species are the main fungal agents causing infectious conditions in hospital patients. The development of new drugs with antifungal potential, increased efficacy, and reduced toxicity is essential to face the challenge of fungal resistance to standard treatments. The aim of this study is to evaluate the in vitro antifungal effects of two crude extracts of Crinum americanum L., a rich alkaloid fraction and lycorine alkaloid, on the Candida species. As such, we used a disk diffusion susceptibility test, determined the minimum inhibitory concentration (MIC), and characterized the components of the extracts using Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (ESI FT-ICR MS). The extracts were found to have antifungal activity against various Candida species. The chemical characterization of the extracts indicated the presence of alkaloids such as lycorine and crinine. The Amaryllidaceae family has a promising antifungal potential. Furthermore, it was found that the alkaloid lycorine directly contributes to the effects that were observed for the extracts and fraction of C. americanum.
Assuntos
Alcaloides , Alcaloides de Amaryllidaceae , Amaryllidaceae , Crinum , Alcaloides/química , Alcaloides/farmacologia , Alcaloides de Amaryllidaceae/química , Alcaloides de Amaryllidaceae/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Candida , Crinum/química , Humanos , Fenantridinas , Extratos Vegetais/química , Extratos Vegetais/farmacologiaRESUMO
The purpose of this systematic review was to identify the available literature on the essential oil from species of genus Cordia. This study followed the Preferred Reporting Items for Systematic Reviews. The search was conducted on four databases: LILACS, PubMed, Science Direct, and Scopus until June 5th, 2020, with no time or language restrictions. Sixty out of the 1,333 initially gathered studies fit the inclusion criteria after the selection process. Nine species of Cordia were reported in the selected studies, out of which 79% of the evaluated studies reported essential oil from Cordia curassavica. The essential oil extraction methods identified were hydrodistillation and steam distillation. As for biological application, antimicrobial, anti-inflammatory, larvicidal and antioxidant activities were the most reported. The main compounds reported for essential oil were ß-caryophyllene, α-humulene, α-pinene, bicyclogermacrene, and sabinene. The information reported in this systematic review can contribute scientifically to the recognition of the importance of the genus Cordia.
El propósito de esta revisión sistemática fue identificar la literatura disponible sobre el aceite esencial de especies del género Cordia. Este estudio siguió los elementos de informe preferidos para revisiones sistemáticas. La búsqueda se realizó en cuatro bases de datos: LILACS, PubMed, Science Direct y Scopus hasta el 5 de junio de 2020, sin restricciones de tiempo ni de idioma. Sesenta de los 1.333 estudios reunidos inicialmente cumplieron los criterios de inclusión después del proceso de selección. Se informaron nueve especies de Cordia en los estudios seleccionados, de los cuales el 79% de los estudios evaluados informaron aceite esencial de Cordia curassavica. Los métodos de extracción de aceite esencial identificados fueron la hidrodestilación y la destilación al vapor. En cuanto a la aplicación biológica, las actividades antimicrobianas, antiinflamatorias, larvicidas y antioxidantes fueron las más reportadas. Los principales compuestos reportados para el aceite esencial fueron ß-cariofileno, α-humuleno, α-pineno, biciclogermacreno y sabineno. La información reportada en esta revisión sistemática puede contribuir científicamente al reconocimiento de la importancia del género Cordia.
Assuntos
Óleos Voláteis/química , Cordia/química , Sesquiterpenos/análise , Destilação , Monoterpenos/análiseRESUMO
Miconia chamissois Naudin is a species from the Cerrado, which is being increasingly researched for its therapeutic potential. The aim of this study was to obtain a standardized extract and to evaluate seasonal chemical variations. Seven batches of aqueous extracts from leaves were produced for the standardization. These extracts were evaluated for total solids, polyphenol (TPC) and flavonoid content (TFC), vitexin derivative content, antioxidant activity; thin-layer chromatography (TLC), and high-performance liquid chromatography (HPLC) profiles were generated. For the seasonal study, leaves were collected from five different periods (May 2017 to August 2018). The results were correlated with meteorological data (global radiation, temperature, and rainfall index). Using chromatographic and spectroscopic techniques, apigenin C-glycosides (vitexin/isovitexin) and derivatives, luteolin C-glycosides (orientin/isoorientin) and derivatives, a quercetin glycoside, miconioside B, matteucinol-7-O-ß-apiofuranosyl (1 â 6) -ß-glucopyranoside, and farrerol were identified. Quality parameters, including chemical marker quantification by HPLC, and biological activity, are described. In the extract standardization process, all the evaluated parameters showed low variability. The seasonality study revealed no significant correlations (p < 0.05) between TPC or TFC content and meteorological data. These results showed that it is possible to obtain extracts from M. chamissois at any time of the year without significant differences in composition.
Assuntos
Melastomataceae/química , Extratos Vegetais/química , Folhas de Planta/química , Flavonoides/análise , Pradaria , Polifenóis/análise , Estações do AnoRESUMO
The purpose of this systematic review was to identify the available literature of production, purification, and characterization of proteases by endophytic fungi. There are few complete studies that entirely exhibit the production, characterization, and purification of proteases from endophytic fungi. This study followed the PRISMA, and the search was conducted on five databases: PubMed, PMC, Science Direct, Scopus Articles, and Web of Science up until 18 May 2021, with no time or language restrictions. The methodology of the selected studies was evaluated using GRADE. Protease production, optimization, purification, and characterization were the main evaluated outcomes. Of the 5540 initially gathered studies, 15 met the inclusion criteria after a two-step selection process. Only two studies optimized the protease production using statistical design and two reported enzyme purification and characterization. The genus Penicillium and Aspergillus were the most cited among the eleven different genera of endophytic fungi evaluated in the selected articles. Six studies proved the ability of some endophytic fungi to produce fibrinolytic proteases, demonstrating that endophytic fungi can be exploited for the further production of agents used in thrombolytic therapy. However, further characterization and physicochemical studies are required to evaluate the real potential of endophytic fungi as sources of industrial enzymes.
Assuntos
Aspergillus/enzimologia , Endófitos/enzimologia , Proteínas Fúngicas/biossíntese , Penicillium/enzimologia , Peptídeo Hidrolases/biossíntese , Proteínas Fúngicas/química , Peptídeo Hidrolases/químicaRESUMO
Cordia verbenacea DC (Boraginaceae) is a flowering shrub found along the Brazilian Atlantic Forest, Brazilian coast, and low areas of the Amazon. The crude extract of its leaves is widely used in Brazilian folk medicine as an anti-inflammatory, both topically and orally. The aim of this study is to evaluate the activity of C. verbenacea ethanolic leaves extract (CVE) against UVB-triggered cutaneous inflammation and oxidative damage in hairless mice. CVE treatment recovered cutaneous antioxidant capacity demonstrated by scavenging ABTS+ free radical and iron-reducing antioxidant potential evaluated by FRAP. CVE also controlled the following UV-triggered events in the skin: reduced glutathione (GSH) depletion, catalase activity decrease, and superoxide anion (Oâ -) build-up. Furthermore, mice treated with CVE exhibited less inflammation, shown by the reduction in COX-2 expression, TNF-α, IL-1ß, IL-6, edema, and neutrophil infiltration. CVE also regulated epidermal thickening and sunburn cells, reduced dermal mast cells, and preserved collagen integrity. The best results were obtained using 5% CVE-added emulsion. The present data demonstrate that topical administration of CVE presents photochemoprotective activity in a mouse model of UVB inflammation and oxidative stress. Because of the intricate network linking inflammation, oxidative stress, and skin cancer, these results also indicate the importance of further studies elucidating a possible role of C. verbenacea in the prevention of UVB-induced skin cancer and evaluating a potential synergy between CVE and sunscreens in topical products against UVB damaging effects to the skin.
Assuntos
Cordia/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Administração Tópica , Animais , Emulsões , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/administração & dosagem , Folhas de Planta/química , Pele/metabolismo , Protetores Solares/administração & dosagem , Protetores Solares/química , Protetores Solares/farmacologiaRESUMO
The objective of this study was to evaluate biological and phytochemical properties of the aqueous extract from the leaves of Miconia chamissois Naudin (AEMC). Phytochemical properties were assessed by analyzing the chromatographic profile and the polyphenol content of AEMC. Biological properties evaluation was conducted based on cytotoxicity assay and by evaluating the antioxidant, antimicrobial, and enzymatic inhibition activities. Results indicated the presence of phytochemicals in AEMC such as flavonoids and polyphenols, including rutin, isoquercitrin and vitexin derivatives. AEMC showed antioxidant activity, which may be attributed to the high polyphenolic content. Moreover, AEMC demonstrated in vitro enzyme inhibition activity against tyrosinase and alpha-amylase, as well as showed low cytotoxicity. On the other hand, AEMC exhibited weak antimicrobial activity against S. aureusand C. albicans. Thus, AEMC is a promising alternative in search of potential drugs for the treatment of diseases induced by oxidative stress and inflammation, conditions due to hyperpigmentation processes, such as melisma, as well as for diabetes.
El objetivo de este estudio fue detectar las propiedades biológicas y fitoquímicos del extracto acuoso de las hojas de Miconia chamissois Naudin (AEMC). Las propiedades fitoquímicas se evaluaron analizando el perfil cromatográfico y el contenido de polifenoles de AEMC. La evaluación de las propiedades biológicas se realizó en base al ensayo de citotoxicidad y evaluando las actividades de inhibición antioxidante, antimicrobiana y enzimática. Los resultados indicaron la presencia de fitoquímicos en AEMC, como flavonoides y polifenoles, que incluyen derivados de rutina, isoquercitrina y vitexina. AEMC mostró una actividad antioxidante considerable, que puede atribuirse al alto contenido polifenólico. Además, AEMC exhibió actividad de inhibición enzimática in vitro contra tirosinasa y alfa-amilasa, así como mostró baja citotoxicidad. Por otro lado, AEMC demostró actividad antimicrobiana débil contra S. aureusy C. albicans. Por lo tanto, AEMC es una alternativa prometedora en busca de posibles drogas para el tratamiento de enfermedades inducidas por el estrés oxidativo y la inflamación, afecciones debidas a procesos de hiperpigmentación, como el melasma, así como para la diabetes.
Assuntos
Extratos Vegetais/farmacologia , Extratos Vegetais/química , Melastomataceae/química , Flavonoides/análise , Cromatografia Líquida de Alta Pressão , Cromatografia em Camada Fina , Monofenol Mono-Oxigenase/antagonistas & inibidores , alfa-Amilases/antagonistas & inibidores , Polifenóis/análise , Anti-Infecciosos/farmacologia , Antioxidantes/farmacologiaRESUMO
BACKGROUND: Current recommendations for the self-management of SARS-Cov-2 disease (COVID-19) include self-isolation, rest, hydration, and the use of NSAID in case of high fever only. It is expected that many patients will add other symptomatic/adjuvant treatments, such as herbal medicines. AIMS: To provide a benefits/risks assessment of selected herbal medicines traditionally indicated for "respiratory diseases" within the current frame of the COVID-19 pandemic as an adjuvant treatment. METHOD: The plant selection was primarily based on species listed by the WHO and EMA, but some other herbal remedies were considered due to their widespread use in respiratory conditions. Preclinical and clinical data on their efficacy and safety were collected from authoritative sources. The target population were adults with early and mild flu symptoms without underlying conditions. These were evaluated according to a modified PrOACT-URL method with paracetamol, ibuprofen, and codeine as reference drugs. The benefits/risks balance of the treatments was classified as positive, promising, negative, and unknown. RESULTS: A total of 39 herbal medicines were identified as very likely to appeal to the COVID-19 patient. According to our method, the benefits/risks assessment of the herbal medicines was found to be positive in 5 cases (Althaea officinalis, Commiphora molmol, Glycyrrhiza glabra, Hedera helix, and Sambucus nigra), promising in 12 cases (Allium sativum, Andrographis paniculata, Echinacea angustifolia, Echinacea purpurea, Eucalyptus globulus essential oil, Justicia pectoralis, Magnolia officinalis, Mikania glomerata, Pelargonium sidoides, Pimpinella anisum, Salix sp, Zingiber officinale), and unknown for the rest. On the same grounds, only ibuprofen resulted promising, but we could not find compelling evidence to endorse the use of paracetamol and/or codeine. CONCLUSIONS: Our work suggests that several herbal medicines have safety margins superior to those of reference drugs and enough levels of evidence to start a clinical discussion about their potential use as adjuvants in the treatment of early/mild common flu in otherwise healthy adults within the context of COVID-19. While these herbal medicines will not cure or prevent the flu, they may both improve general patient well-being and offer them an opportunity to personalize the therapeutic approaches.
RESUMO
L-asparaginase has been used in the remission of malignant neoplasms such as acute lymphoblastic leukemia. The search for new sources of this enzyme has become attractive for therapeutics. Traditional methods for biomolecule purification involve several steps. A two-phase system may be a good strategy to anticipate one of these stages. This study aimed to produce and purify a fungal L-asparaginase through an aqueous two-phase micellar system (ATPMS) using Triton X-114. The fungus Penicillium sp.-encoded 2DSST1 was isolated from Cerrado soil. Plackett-Burman design followed by a 24 full factorial design was used to determine the best conditions to produce L-asparaginase. The evaluated variables were L-asparagine, L-proline, wheat bran, potato dextrose broth, ammonium sulfate, yeast extract, sucrose and glucose concentrations, incubation temperature, incubation period, and initial pH of the culture medium. L-asparaginase quantification was valued by the formation of ß-aspartyl hydroxamate. The significant positive variables, L-asparagine, L-proline, potato dextrose broth, and sucrose concentrations, were evaluated at 2 levels (+ 1 and - 1) with triplicate of the central point. After 34 runs, maximum activity (2.33 IU/mL) was achieved at the factorial design central point. A central composite design was performed in ATPMS at two levels (+ 1 and - 1) varying Triton X-114 concentration (w/v), separation phase temperature, and crude extract concentration (w/v). The L-asparaginase partition coefficient (K) was considered the experimental design response. Out of the 16 systems that were examined, the most promising presented a purification factor of 1.4 and a yield of 100%.
Assuntos
Asparaginase/isolamento & purificação , Fibras na Dieta/metabolismo , Micelas , Penicillium/enzimologia , Asparaginase/metabolismo , Biodegradação Ambiental , Meios de Cultura/química , Meios de Cultura/metabolismo , Fibras na Dieta/análise , Fermentação , Extração Líquido-Líquido , Octoxinol/análise , Octoxinol/química , Penicillium/crescimento & desenvolvimento , Penicillium/metabolismo , TemperaturaRESUMO
ß-Galactosidases are widely used for industrial applications. These enzymes could be used in reactions of lactose hydrolysis and transgalactosylation. The objective of this study was the production, purification, and characterization of an extracellular ß-galactosidase from a filamentous fungus, Aspergillus niger. The enzyme production was optimized by a factorial design. Maximal ß-galactosidase activity (24.64 U/mL) was found in the system containing 2% of a soybean residue (w/v) at initial pH 7.0, 28 °C, 120 rpm in 7 days. ANOVA of the optimization study indicated that the response data on temperature and pH were significant (p < 0.05). The regression equation indicated that the R2 is 0.973. Ultrafiltration at a 100 and 30 kDa cutoff followed by gel filtration and anion exchange chromatography were carried out to purify the fungal ß-galactosidase. SDS-PAGE revealed a protein with molecular weight of approximately 76 kDa. The partially purified enzyme showed an optimum temperature of 50 °C and optimum pH of 5.0, being stable under these conditions for 15 h. The enzyme was exposed to conditions approaching gastric pH and in pepsin's presence, 80% of activity was preserved after 2 h. These results reveal a A. niger ß-galactosidase obtained from residue with favorable characteristics for food industries.
RESUMO
The use of natural oils in topical pharmaceutical preparations has usually presented safe agents for the improvement of human health. Based on research into the immense potential of wound management and healing, we aimed to validate the use of topical natural products by studying the ability of the essential oil of Eugenia dysenterica DC leaves (oEd) to stimulate in vitro skin cell migration. Skin cytotoxicity was evaluated using a fibroblast cell line (L929) by MTT assay. The oil chemical profile was investigated by GC-MS. Moreover, the inhibition of lipopolysaccharide (LPS) induced nitric oxide (NO) production in the macrophage cell line (RAW 264.7) tested. The Chick Chorioallantoic Membrane (CAM) assay was used to evaluate the angiogenic activity and irritating potential of the oil. The oEd induces skin cell migration in a scratch assay at a concentration of 542.2 µg/mL. α-humulene and ß-caryophyllene, the major compounds of this oil, as determined by GC-MS, may partly explain the migration effect. The inhibition of nitric oxide by oEd and α-humulene suggested an anti-inflammatory effect. The CAM assay showed that treatment with oEd ≤ 292 µg/mL did not cause skin injury, and that it can promote angiogenesis in vivo. Hence, these results indicate the feasibility of the essential oil of Eugenia dysenterica DC leaves to developed dermatological products capable of helping the body to repair damaged tissue.
Assuntos
Eugenia/química , Óleos Voláteis/análise , Óleos Voláteis/farmacologia , Folhas de Planta/química , Cicatrização/efeitos dos fármacos , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Humanos , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Sesquiterpenos Monocíclicos , Óxido Nítrico/metabolismo , Sesquiterpenos Policíclicos , Células RAW 264.7 , Sesquiterpenos/análise , Sesquiterpenos/farmacologiaRESUMO
Pouteria ramiflora (Mart.) Radlk. (Sapotaceae) is a species used by inhabitants from the Cerrado for its edible fruits and medicinal value. Hexane crude extracts from leaves and fractions were evaluated for in vitro α-amylase inhibitory activity and antioxidant potential. The fraction with the highest α-amylase inhibitory activity was submitted to a phytochemical study. Three triterpenes were isolated, friedelin, epi-friedelanol, and taraxerol. This is the first report of these compounds isolated from P. ramiflora. Moreover, this is the first report of friedelin isolated from Pouteria sp. Epi-friedelanol was present in significant amounts, suggesting that this compound could be a candidate marker for this species.