Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Neotrop. ichthyol ; 18(2): e190089, 2020. tab
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1135374

RESUMO

Docosahexaenoic acid (DHA) is the most critical and least available omega-3 fatty acid in the Western human diet. Currently, the source of omega-3 long chain polyunsaturated fatty acids (LC-PUFA) is mainly dependent on wild fisheries, making this resource unsustainable in the foreseeable future. In recent years, a high rate of biosynthesis and accumulation of DHA has been discovered in a freshwater species (Chirostoma estor) belonging to the Atherinopsidae family. Interest in evaluating fatty acid composition in other members of the family has emerged, so this study compiles original data of flesh composition of eight atherinopsid species from freshwater and brackish environments, either wild or cultured. High levels of DHA (16 to 31%) were found in all analyzed members of the family, except in C. grandocule, independently of their habitat or origin. The analyzed species of the Jordani group (C. estor, C. promelas and C. humboldtianum) showed high DHA and low EPA levels (<0.5%) as previously reported for cultured C. estor. The low trophic niche of these atherinopsids and their fatty acid accumulation capabilities are factors that make these species noteworthy candidates for sustainable aquaculture.(AU)


O ácido docosahexaenóico (DHA) é o ácido graxo ômega-3 mais importante e menos disponível na dieta humana ocidental. Atualmente, a fonte de ácidos graxos poliinsaturados de cadeia longa ômega-3 (LC-PUFA) depende principalmente da pesca extrativista, tornando esse recurso insustentável em um futuro próximo. Nos últimos anos, uma alta taxa de biossíntese e acúmulo de DHA foi descoberta em uma espécie de água doce (Chirostoma estor) pertencente à família Atherinopsidae. Deste modo, surgiu o interesse em avaliar a composição de ácidos graxos em outros membros da família. Portanto, este estudo compila dados originais da composição de carne de oito espécies de aterinopsídeos de ambientes de água doce e salobra, selvagens ou cultivadas. Altos níveis de DHA (16 a 31%) foram encontrados em todos os membros da família analisados, exceto em C. grandocule, independentemente de seu habitat ou origem. As espécies analisadas do grupo Jordani (C. estor, C. promelas e C. humboldtianum) apresentaram altos níveis de DHA e EPA baixos (<0,5%), como relatado anteriormente para C. estor cultivado. O baixo nicho trófico desses aterinopsídeos e sua capacidade de acumulação de ácidos graxos são fatores que tornam essas espécies notáveis candidatas à aquicultura sustentável.(AU)


Assuntos
Animais , Ecossistema , Aquicultura , Smegmamorpha/fisiologia , Ácidos Graxos , Ácidos Graxos Ômega-3 , Ácidos Docosa-Hexaenoicos , Água Doce
2.
Molecules ; 24(8)2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-31027188

RESUMO

Pterygoplichthys disjunctivus, locally named the armoured catfish, is a by-catch of tilapia fishing that accounts for up to 80% of total captured fish in the Adolfo Lopez Mateos dam, in Michoacán, México, affecting the economy of its surrounding communities. This invasive fish is discarded by fishermen since native people do not consume it, partly due to its appearance, yet it is rich in protein. The aim of this study was to produce hydrolysates from armoured catfish using food-grade proteases (neutrases HT and PF and alcalase PAL) and investigate the processing conditions (pH and temperature) that lead to a high degree of hydrolysis, antioxidant activity, and Angiotensin I-Converting Enzyme (ACE) Inhibitory activity. No other similar research has been reported on this underutilized fish. The antioxidant activity was measured by three different methods, ABTS, FRAP and ORAC, with relevance to food and biological systems in order to obtain a more comprehensive assessment of the activity. In addition, the main peptide sequences were identified. All enzymes produced hydrolysates with high antioxidant activity. In particular, the protease HT led to the highest antioxidant activity according to the ABTS (174.68 µmol Trolox equivalent/g fish) and FRAP (7.59 mg ascorbic acid equivalent/g fish) methods and almost the same as PAL according to the ORAC method (51.43 µmol Trolox equivalent/g fish). Moreover, maximum activity was obtained at mild pH and temperature (7.5; 50 °C). Interestingly, the ORAC values obtained here were higher than others previously reported for fish hydrolysates and similar to those reported for fruits such as blueberries, apples and oranges. The peptide sequence IEE(E) was present in several peptides in both hydrolysates; this sequence may be partly responsible for the high antioxidant activity, particularly the one based on iron-reducing power. These findings will be relevant to the valorization of other fish/fish muscle discards and could contribute to the production of food supplements and nutraceuticals.


Assuntos
Antioxidantes/química , Hidrolisados de Proteína/química , Inibidores da Enzima Conversora de Angiotensina/química , Animais , Peixes-Gato , Concentração de Íons de Hidrogênio , Hidrólise , Temperatura
3.
J Lipid Res ; 55(7): 1408-19, 2014 07.
Artigo em Inglês | MEDLINE | ID: mdl-24792929

RESUMO

Currently existing data show that the capability for long-chain PUFA (LC-PUFA) biosynthesis in teleost fish is more diverse than in other vertebrates. Such diversity has been primarily linked to the subfunctionalization that teleostei fatty acyl desaturase (Fads)2 desaturases have undergone during evolution. We previously showed that Chirostoma estor, one of the few representatives of freshwater atherinopsids, had the ability for LC-PUFA biosynthesis from C18 PUFA precursors, in agreement with this species having unusually high contents of DHA. The particular ancestry and pattern of LC-PUFA biosynthesis activity of C. estor make this species an excellent model for study to gain further insight into LC-PUFA biosynthetic abilities among teleosts. The present study aimed to characterize cDNA sequences encoding fatty acyl elongases and desaturases, key genes involved in the LC-PUFA biosynthesis. Results show that C. estor expresses an elongase of very long-chain FA (Elovl)5 elongase and two Fads2 desaturases displaying Δ4 and Δ6/Δ5 specificities, thus allowing us to conclude that these three genes cover all the enzymatic abilities required for LC-PUFA biosynthesis from C18 PUFA. In addition, the specificities of the C. estor Fads2 enabled us to propose potential evolutionary patterns and mechanisms for subfunctionalization of Fads2 among fish lineages.


Assuntos
Ácidos Graxos Dessaturases , Ácidos Graxos Insaturados , Proteínas de Peixes , Peixes , Animais , Ácidos Graxos Dessaturases/química , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/genética , Ácidos Graxos Insaturados/metabolismo , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Peixes/genética , Peixes/metabolismo , Especificidade por Substrato
4.
Artigo em Inglês | MEDLINE | ID: mdl-14698910

RESUMO

Food grade fisheries have reached their sustainable limits while aquaculture production has increased to meet consumer demands. However, for growth in aquaculture to continue and utilise sustainable, feeding ingredients, alternatives to fish oil (FO), the predominant lipid component of fish diets, must be developed. Therefore, there is currently considerable interest in the regulation of fatty acid metabolism in fish in order to determine strategies for the best use of plant oils in diets for commercially important cultured fish species. Plant oils are characteristically rich in C18 polyunsaturated fatty acids (PUFA) but devoid of C20 and C22 highly unsaturated fatty acids (HUFA) found in FO. The fatty acyl desaturase enzyme activities involved in the biosynthesis of HUFA from PUFA are known to be under nutritional regulation and can be increased in fish fed diets rich in plant oils. However, fatty acid desaturase activity is also known to be modulated by water temperature in fish. The present study aimed to investigate the interaction between water temperature and diet in the regulation of fatty acid metabolism in rainbow trout. Trout, acclimatized to 7, 11 or 15 degrees C, were fed for 4 weeks on diets in which the FO was replaced in a graded manner by palm oil. At the end of the trial, fatty acyl desaturation/elongation and beta-oxidation activities were determined in isolated hepatocytes and intestinal enterocytes using [1-14C]18:3n-3 as substrate, and samples of liver were collected for analysis of lipid and fatty acid composition. The most obvious effect of temperature was that fatty acid desaturation/elongation and beta-oxidation were reduced in both hepatocytes and intestinal enterocytes from fish maintained at the highest water temperature (15 degrees C). There were differences between the two tissues with the highest desaturation/elongation and beta-oxidation activities tending to be in fish held at 11 degrees C in the case of hepatocytes, but 7 degrees C in enterocytes. Correlations between fatty acid metabolism and dietary palm oil were most clearly observed in desaturation/elongation activities in both hepatocytes and enterocytes at 11 degrees C. The highest beta-oxidation activities were generally observed in fish fed FO alone in both hepatocytes and enterocytes with palm oil having differential effects in the two cell types.


Assuntos
Enterócitos/metabolismo , Ácidos Graxos/metabolismo , Hepatócitos/metabolismo , Oncorhynchus mykiss/metabolismo , Óleos de Plantas/administração & dosagem , Animais , Temperatura Corporal , Dieta , Gorduras na Dieta , Ácidos Graxos Dessaturases/metabolismo , Mucosa Intestinal/metabolismo , Oxirredução/efeitos dos fármacos , Óleo de Palmeira
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...