Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Analyst ; 136(23): 4925-34, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-21881665

RESUMO

The influence of the addition of carbon using methane or methanol/water to an inductively coupled plasma (ICP) via the carrier gas flow on the sensitivity in laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was studied. During the ablation of SRM NIST 610 with simultaneous addition of CH(4) (0.6-1.4 ml min(-1)), a sensitivity enhancement of more than one order of magnitude for selected analytes (e.g. (75)As(+)) was observed. In addition to the sensitivity enhancement for As, Te, I and Se, also all other measured elements showed a significantly enhanced sensitivity (minimum by a factor of 2). Potential mechanisms for the observed intensity enhancement include charge transfer reactions, a change in the ICP shape and a temperature increase in the plasma. Furthermore, the aspiration of a methanol-water mixture into a cooled spray chamber and the simultaneous addition to the laser ablated aerosol was investigated. This type of mixing leads to a sensitivity enhancement up to a factor of 20. To prevent clogging of the sampler cone and skimmer cone by carbon deposition, a fast cleaning procedure for the interface is tested during running ICP, which allows the application of such a set-up for specific applications.

2.
Anal Bioanal Chem ; 398(7-8): 2915-28, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20967428

RESUMO

Whereas colored andesine/labradorite had been thought unique to the North American continent, red andesine supposedly coming from the Democratic Republic of the Congo (DR Congo), Mongolia, and Tibet has been on the market for the last 10 years. After red Mongolian andesine was proven to be Cu-diffused by heat treatment from colorless andesine starting material, efforts were taken to distinguish minerals sold as Tibetan and Mongolian andesine. Using nanosecond laser ablation-inductively coupled plasma mass spectrometry (ICPMS), the main and trace element composition of andesines from different origins was determined. Mexican, Oregon, and Asian samples were clearly distinguishable by their main element content (CaO, SiO(2) Na(2)O, and K(2)O), whereas the composition of Mongolian, Tibetan, and DR Congo material was within the same range. Since the Li concentration was shown to be correlated with the Cu concentration, the formerly proposed differentiation by the Ba/Sr vs. Ba/Li ratio does not distinguish between samples from Tibet and Mongolia, but only between red and colorless material. Using femtosecond laser ablation multi-collector ICPMS in high-resolution mode, laboratory diffused samples showed variations up to 3‰ for (65)Cu/(63)Cu within one mineral due to the diffusion process. Ar isotope ratio measurements proved that heat treatment will reduce the amount of radiogenic (40)Ar in the samples significantly. Only low levels of radiogenic Ar were found in samples collected on-site in both mine locations in Tibet. Together with a high intra-sample variability of the Cu isotope ratio, andesine samples labeled as coming from Tibet are most probably Cu-diffused, using initially colorless Mongolian andesines as starting material. Therefore, at the moment, the only reliable source of colored andesine/labradorite remains the state of Oregon.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...