Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 193(10): 666, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34545422

RESUMO

Lead (Pb) is a potentially toxic element with significant environmental interest. Simple and sensitive analytical methods are necessary to allow determination of this element at trace levels using sample preparation procedures related to green chemistry. For this, calcium alginate beads (CA-beads), a low-cost and environmentally friendly biopolymer, have been proposed for extraction and preconcentration of Pb2+ in river water samples and determination by flame atomic absorption spectrometry (FAAS). CA-beads were prepared and applied to extract and preconcentrate Pb2+ in river water samples, providing an enrichment factor (EF) of 50, enhancement factor (E) of 54, a detection limit of 2 µg L-1, and a relative standard deviation < 5%. The extraction of Pb2+ in CA-beads achieved good selectivity, with recoveries from 94.8 to 100.2% in real samples, demonstrating the good accuracy of the proposed method. The results were also compared to those obtained by ICP-MS. The reuse of CA-beads was evaluated for six cycles, and under these conditions, the extraction and preconcentration efficiency of Pb2+ were not significantly affected. The developed methodology was applied to determine Pb2+ in water samples from rivers that are part of the hydrographic areas of Tibagi and Pitangui Rivers, in which the Pb2+ concentration was less than 2 µg L-1, a concentration lower than that established by Brazilian legislation for class I and II rivers.


Assuntos
Chumbo , Poluentes Químicos da Água , Alginatos , Monitoramento Ambiental , Estudos de Viabilidade , Concentração de Íons de Hidrogênio , Rios , Espectrofotometria Atômica , Água , Poluentes Químicos da Água/análise
2.
Chemosphere ; 263: 127984, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32854010

RESUMO

Rare earth elements (REEs) are essential in high technology industries and have great economic value. The monitoring of REEs concentrations in rocks from oil well drill cuttings is critical to avoid environmental contamination and evaluate new sources of these elements. However, information is scarce about the REEs concentrations in drill cuttings. In this work, the concentration of REEs in drill cuttings from oil and gas exploration wells in ultradeep coastal water of Brazilian were investigated at different depths. The drill cutting samples were submitted to microwave-assisted acid digestion prior to the determination of concentration by ICP-MS, using Rh as internal standard for calibration. The limits of quantification (LoQ) ranged from 3.3 µg kg-1 for Ho to 198 µg kg-1 for Sm. The accuracy was evaluated by analyzing certified reference materials for rocks. The obtained REEs concentrations agreed with the certified values, reaching 83%-105% agreement. The drill cutting depth profile analysis indicates Ce, La, Nd, Sm, and Eu concentrations up to mg kg-1. The REEs concentrations obtained in drill cutting depth profile was analyzed by principal component analysis (PCA), and hierarchical cluster analysis (HCA) identified tendency and similarity between drill cutting samples. Three groups were formed according to the composition of the REEs. In addition, the concentration of these chemicals elements varied at different depths. The analysis of drill cuttings revealed REEs concentrations up to the mg per kg-range (ppm), potentially making this disposable material an alternative source for REEs extraction, and adding value to this material.


Assuntos
Monitoramento Ambiental , Metais Terras Raras/análise , Poluentes Químicos da Água/análise , Brasil , Mineração , Campos de Petróleo e Gás
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...