Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol Evol ; 9(2): 279-296, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28082607

RESUMO

Temperature, perhaps more than any other environmental factor, is likely to influence the evolution of all organisms. It is also a very interesting factor to understand how genomes are shaped by selection over evolutionary timescales, as it potentially affects the whole genome. Among thermophilic prokaryotes, temperature affects both codon usage and protein composition to increase the stability of the transcriptional/translational machinery, and the resulting proteins need to be functional at high temperatures. Among eukaryotes less is known about genome evolution, and the tube-dwelling worms of the family Alvinellidae represent an excellent opportunity to test hypotheses about the emergence of thermophily in ectothermic metazoans. The Alvinellidae are a group of worms that experience varying thermal regimes, presumably having evolved into these niches over evolutionary times. Here we analyzed 423 putative orthologous loci derived from 6 alvinellid species including the thermophilic Alvinella pompejana and Paralvinella sulfincola. This comparative approach allowed us to assess amino acid composition, codon usage, divergence, direction of residue changes and the strength of selection along the alvinellid phylogeny, and to design a new eukaryotic thermophilic criterion based on significant differences in the residue composition of proteins. Contrary to expectations, the alvinellid ancestor of all present-day species seems to have been thermophilic, a trait subsequently maintained by purifying selection in lineages that still inhabit higher temperature environments. In contrast, lineages currently living in colder habitats likely evolved under selective relaxation, with some degree of positive selection for low-temperature adaptation at the protein level.


Assuntos
Aclimatação , Evolução Molecular , Poliquetos/genética , Proteoma/genética , Animais , Temperatura Baixa , Loci Gênicos , Fontes Hidrotermais , Filogenia , Seleção Genética
2.
BMC Genomics ; 16: 461, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26076695

RESUMO

BACKGROUND: The genus Microbotryum includes plant pathogenic fungi afflicting a wide variety of hosts with anther smut disease. Microbotryum lychnidis-dioicae infects Silene latifolia and replaces host pollen with fungal spores, exhibiting biotrophy and necrosis associated with altering plant development. RESULTS: We determined the haploid genome sequence for M. lychnidis-dioicae and analyzed whole transcriptome data from plant infections and other stages of the fungal lifecycle, revealing the inventory and expression level of genes that facilitate pathogenic growth. Compared to related fungi, an expanded number of major facilitator superfamily transporters and secretory lipases were detected; lipase gene expression was found to be altered by exposure to lipid compounds, which signaled a switch to dikaryotic, pathogenic growth. In addition, while enzymes to digest cellulose, xylan, xyloglucan, and highly substituted forms of pectin were absent, along with depletion of peroxidases and superoxide dismutases that protect the fungus from oxidative stress, the repertoire of glycosyltransferases and of enzymes that could manipulate host development has expanded. A total of 14% of the genome was categorized as repetitive sequences. Transposable elements have accumulated in mating-type chromosomal regions and were also associated across the genome with gene clusters of small secreted proteins, which may mediate host interactions. CONCLUSIONS: The unique absence of enzyme classes for plant cell wall degradation and maintenance of enzymes that break down components of pollen tubes and flowers provides a striking example of biotrophic host adaptation.


Assuntos
Fungos/genética , Genoma Fúngico/genética , Parasitos/genética , Doenças das Plantas/microbiologia , Plantas/microbiologia , Silene/microbiologia , Transcriptoma/genética , Animais , Mapeamento Cromossômico/métodos , Perfilação da Expressão Gênica/métodos , Interações Hospedeiro-Parasita/genética , Lipase/genética , Peroxidases/genética , Superóxido Dismutase/genética
3.
Mol Biol Evol ; 32(4): 928-43, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25534033

RESUMO

Dimorphic mating-type chromosomes in fungi are excellent models for understanding the genomic consequences of recombination suppression. Their suppressed recombination and reduced effective population size are expected to limit the efficacy of natural selection, leading to genomic degeneration. Our aim was to identify the sequences of the mating-type chromosomes (a1 and a2) of the anther-smut fungi and to investigate degeneration in their nonrecombining regions. We used the haploid a1 Microbotryum lychnidis-dioicae reference genome sequence. The a1 and a2 mating-type chromosomes were both isolated electrophoretically and sequenced. Integration with restriction-digest optical maps identified regions of recombination and nonrecombination in the mating-type chromosomes. Genome sequence data were also obtained for 12 other Microbotryum species. We found strong evidence of degeneration across the genus in the nonrecombining regions of the mating-type chromosomes, with significantly higher rates of nonsynonymous substitution (dN/dS) than in nonmating-type chromosomes or in recombining regions of the mating-type chromosomes. The nonrecombining regions of the mating-type chromosomes also showed high transposable element content, weak gene expression, and gene losses. The levels of degeneration did not differ between the a1 and a2 mating-type chromosomes, consistent with the lack of homogametic/heterogametic asymmetry between them, and contrasting with X/Y or Z/W sex chromosomes.


Assuntos
Basidiomycota/genética , Genes Fúngicos Tipo Acasalamento , Recombinação Genética , Cromossomos Sexuais , Sequência de Bases , Elementos de DNA Transponíveis , Deleção de Genes , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
4.
PLoS One ; 7(11): e49665, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23185400

RESUMO

Although most eukaryotes reproduce sexually at some moment of their life cycle, as much as a fifth of fungal species were thought to reproduce exclusively asexually. Nevertheless, recent studies have revealed the occurrence of sex in some of these supposedly asexual species. For industrially relevant fungi, for which inoculums are produced by clonal-subcultures since decades, the potentiality for sex is of great interest for strain improvement strategies. Here, we investigated the sexual capability of the fungus Penicillium roqueforti, used as starter for blue cheese production. We present indirect evidence suggesting that recombination could be occurring in this species. The screening of a large sample of strains isolated from diverse substrates throughout the world revealed the existence of individuals of both mating types, even in the very same cheese. The MAT genes, involved in fungal sexual compatibility, appeared to evolve under purifying selection, suggesting that they are still functional. The examination of the recently sequenced genome of the FM 164 cheese strain enabled the identification of the most important genes known to be involved in meiosis, which were found to be highly conserved. Linkage disequilibria were not significant among three of the six marker pairs and 11 out of the 16 possible allelic combinations were found in the dataset. Finally, the detection of signatures of repeat induced point mutations (RIP) in repeated sequences and transposable elements reinforces the conclusion that P. roqueforti underwent more or less recent sex events. In this species of high industrial importance, the induction of a sexual cycle would open the possibility of generating new genotypes that would be extremely useful to diversify cheese products.


Assuntos
Queijo/microbiologia , Genes Fúngicos Tipo Acasalamento , Penicillium/genética , Penicillium/fisiologia , Sequência de Aminoácidos , Elementos de DNA Transponíveis , DNA Fúngico/genética , Genótipo , Meiose , Modelos Genéticos , Dados de Sequência Molecular , Mutação Puntual , Recombinação Genética , Análise de Sequência de DNA
5.
PLoS One ; 7(2): e31150, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22348046

RESUMO

Taking advantage of the massive genome sequencing effort made on thermophilic prokaryotes, thermal adaptation has been extensively studied by analysing amino acid replacements and codon usage in these unicellular organisms. In most cases, adaptation to thermophily is associated with greater residue hydrophobicity and more charged residues. Both of these characteristics are positively correlated with the optimal growth temperature of prokaryotes. In contrast, little information has been collected on the molecular 'adaptive' strategy of thermophilic eukaryotes. The Pompeii worm A. pompejana, whose transcriptome has recently been sequenced, is currently considered as the most thermotolerant eukaryote on Earth, withstanding the greatest thermal and chemical ranges known. We investigated the amino-acid composition bias of ribosomal proteins in the Pompeii worm when compared to other lophotrochozoans and checked for putative adaptive changes during the course of evolution using codon-based Maximum likelihood analyses. We then provided a comparative analysis of codon usage and amino-acid replacements from a greater set of orthologous genes between the Pompeii worm and Paralvinella grasslei, one of its closest relatives living in a much cooler habitat. Analyses reveal that both species display the same high GC-biased codon usage and amino-acid patterns favoring both positively-charged residues and protein hydrophobicity. These patterns may be indicative of an ancestral adaptation to the deep sea and/or thermophily. In addition, the Pompeii worm displays a set of amino-acid change patterns that may explain its greater thermotolerance, with a significant increase in Tyr, Lys and Ala against Val, Met and Gly. Present results indicate that, together with a high content in charged residues, greater proportion of smaller aliphatic residues, and especially alanine, may be a different path for metazoans to face relatively 'high' temperatures and thus a novelty in thermophilic metazoans.


Assuntos
Adaptação Fisiológica , Temperatura Alta , Fontes Hidrotermais , Células Procarióticas , Proteoma/fisiologia , Aclimatação , Aminoácidos , Animais , Códon , Poliquetos
6.
BMC Evol Biol ; 7: 95, 2007 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-17592650

RESUMO

BACKGROUND: Molecular clock dates, which place the origin of animal phyla deep in the Precambrian, have been used to reject the hypothesis of a rapid evolutionary radiation of animal phyla supported by the fossil record. One possible explanation of the discrepancy is the potential for fast substitution rates early in the metazoan radiation. However, concerted rate variation, occurring simultaneously in multiple lineages, cannot be detected by "clock tests", and so another way to explore such variation is to look for correlated changes between rates and other biological factors. Here we investigate two possible causes of fast early rates: change in average body size or diversification rate of deep metazoan lineages. RESULTS: For nine genes for phylogenetically independent comparisons between 50 metazoan phyla, orders, and classes, we find a significant correlation between average body size and rate of molecular evolution of mitochondrial genes. The data also indicate that diversification rate may have a positive effect on rates of mitochondrial molecular evolution. CONCLUSION: If average body sizes were significantly smaller in the early history of the Metazoa, and if rates of diversification were much higher, then it is possible that mitochondrial genes have undergone a slow-down in evolutionary rate, which could affect date estimates made from these genes.


Assuntos
Grupos de População Animal/genética , Evolução Biológica , Tamanho Corporal , Evolução Molecular , Especiação Genética , Grupos de População Animal/anatomia & histologia , Grupos de População Animal/classificação , Animais , DNA/genética , DNA Mitocondrial/genética , Extinção Biológica , Genes Mitocondriais/genética , Modelos Biológicos , Mutação , Filogenia , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...