Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 2534, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35169180

RESUMO

The sodium salt-assisted low temperature activation of bentonite (BB) was attempted. The unique features of the raw bentonite and BB were characterized with respect to the morphological, functional, and textural analysis. The adsorptive behaviour was evaluated by adopting methylene blue (MB) as the model pollutant via batch adsorption experiment. The experimental data were fitted to the non-linear isotherm equations (Freundlich, Langmuir, and Temkin), while the adsorption modelling was interpreted by the pseudo-first order, pseudo-second order and Elovich models. The adsorptive mechanism was ascertained according to intraparticle-diffusion and boyd models. The intercalation of sodium salt into the bentonite surface give rise to the specific surface area and total pore volume from 120.34 to 426.91, m2/g and 0.155 to 0.225 cm3/g, respectively, indicating a large proportion of the newly formed surfaces may be connected to new pore walls, associated with the silanol (≡SiOH), and aluminol (≡AlOH), and hydroxyl (-OH) groups for the possible entrapment MB onto the adsorbent. The equilibrium data was satisfactory described by the Langmuir isotherm and pseudo-second order model, with a monolayer adsorption capacity for MB of 318.38 mg/g, while the thermodynamic study verified spontaneous, feasible, and endothermic of the adsorption process.

2.
Environ Res ; 204(Pt B): 112044, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34516977

RESUMO

In this work, the transformation of soybean industrial bio-residue with limited practical applications, into a multifunctional carbonaceous adsorbent (SBAC) via one-step microwave-irradiation has been succeeded. The surface porosity, chemical compositions, functionalities and surface chemistry were featured by microscopic pore-textural analysis, elemental constitution analysis, morphological characterization and Fourier transform infra-red spectroscopy. The adsorptive performance of SBAC was evaluated in a batch experiment by adopting different classes of water pollutants, specifically methylene blue (MB), acetaminophen and 2,4-dichlorophenoxyacetic acid (2,4-D). The equilibrium uptakes were analyzed with respect to the non-linearized Langmuir, Freundlich and Temkin isotherm equations. The unique features of SBAC, specifically the antimicrobial and antifungal efficacies were examined against gram-positive/negative bacteria and fungi species. An ordered microporous-mesoporous structure of SBAC, with the BET surface area and total pore volume of 1696 m2/g and 0.94 m3/g, respectively, has been achieved. The equilibrium data of MB and acetaminophen were found to be in good agreement with the Langmuir isotherm model, with the monolayer adsorption capacities (Qo) of 434.57 mg/g and 393.31 mg/g, respectively. The adsorptive experiment of 2,4-D was best fitted to the Freundlich isotherm equation, with the Qo of 253.17 mg/g. The regeneration performance of the spent SBAC under microwave-irradiation could maintain at 69.42-79.31%, even after five (5) adsorption-regeneration cycles. SBAC exhibited excellent inhibition efficiencies against gram-positive/negative bacteria and fungi species, with the inhibition zones at 14.0-28.0 mm. This newly developed SBAC appears to be a new powerful candidate for the remediation of different classes of water contaminants, and novel antibacterial and antifungal agents against biological contaminations. The novel concept of "turn waste into wealth" in a cost-effective and energy saving manner for environmental preservation has been successfully accomplished.


Assuntos
Antifúngicos , Poluentes Químicos da Água , Adsorção , Antibacterianos , Carvão Vegetal , Calefação , Concentração de Íons de Hidrogênio , Cinética , Azul de Metileno/análise , Micro-Ondas , Glycine max , Poluentes Químicos da Água/análise
3.
Environ Int ; 157: 106851, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34560322

RESUMO

The present work has been oriented to the qualitative and quantitative assessments of the aftermath effects of 2014 flood tragedy on the organic, inorganic and microbial contaminants in the floodwater, with a particular emphasis on their relative health risks and microbial infectious hazards to the flood-affected population, using average daily dose, hazard quotient, hazard index (HI), cancer risk (CR) and quantitative microbial risk assessment. Statistical comparison of the organic and inorganic contents was performed using the paired t-tests, while the predominant socio-demographic profiles and health attributes of the respondents to flood-induced health risks (HI) were verified by the chi-square test and binary logistic regression analysis. Among all, Fe, Cu, Pb, Ni, Zn, Cr, Cd, chlorpyrifos, diazinon, polycyclic aromatic hydrocarbons, estriol, 17α-ethinylestradiol, estrone, ß-estradiol and bisphenol A were detected at the study area after flooding. The microbiological quality of the floodwater samples has been tracked positive for Escherichia coli, Salmonella typhimurium and Shigella flexneri, with the mean concentrations of 6500, 50 and 180 CFU/100 mL, respectively. Exposure and health risk assessments revealed that the overall HI value for organic and inorganic contaminants in the water samples was 1.19, exceeding the USEPA maximum limit of 1, after the flood incidence. The largest CR contributors were Ni, Cr and Cd, while the infection risks (Pinf,single) associated with the exposure of E. coli, Salmonella spp. and Shigella spp. were identified to be 3.1 × 10-2, 1.2 × 10-4 and 3.2 × 10-5 for incidental scenario; and 8.3 × 10-1, 3.9 × 10-1 and 1.9 × 10-1 for intentional scenario, respectively. The findings of these integrated tools are critically important to provide a more reliable quantitative assessment of human health hazards and microbial risks for different environmental settings, to safeguard water resource, and preservation of public health and the overall river ecosystem.


Assuntos
Metais Pesados , Poluentes Químicos da Água , China , Ecossistema , Monitoramento Ambiental , Escherichia coli , Inundações , Humanos , Metais Pesados/análise , Medição de Risco , Água , Poluentes Químicos da Água/análise
4.
Sci Rep ; 10(1): 20151, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33214587

RESUMO

Herein, the facile one step acid activation of bentonite derived functionalized adsorbent (AB) for the effective remediation of both ionic and non-ionic secondary pesticides, ametryn and metolachlor has been attempted. The surface characteristics of AB were examined by the nitrogen adsorption-desorption analysis, scanning electron microscopy (SEM), and Fourier Transforms Infrared (FTIR) Spectroscopy. The adsorptive behavior was evaluated with respect to the effect of contact time, initial concentrations and solution pH. The equilibrium data were fitted to the Langmuir, Freundlich and Temkin isotherm models, while the adsorption kinetic was analyzed using the pseudo-first order and pseudo-second order kinetic equations. Thermodynamic parameters including the standard enthalpy change (ΔH°), standard entropy change (ΔS°), and Gibbs free energy change (ΔG°) were established. Thermodynamic analysis illustrated that the adsorption process was feasible and exothermic in nature, while the characterization findings verified the alteration of FTIR bands, and a high specific surface area of 464.92 m2/g, with a series of pores distributed over the surface. Equilibrium data was best confronted to the pseudo-second order kinetic model, while the adsorptive removal of ametryn and metolachlor onto AB was satisfactory described by the Langmuir isotherm model, with the monolayer adsorption capacities for ametryn and metolachlor of 2.032 and 0.208 mmole/g respectively. The findings outlined the potential of the newly develop AB for the on-site treatment of pesticide polluted water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...