Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(4): 112382, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37060568

RESUMO

Dosage compensation, the balancing of X-linked gene expression between sexes and to the autosomes, is critical to an organism's fitness and survival. In Drosophila, dosage compensation involves hypertranscription of the male X chromosome. Here, we use quantitative live imaging and modeling at single-cell resolution to study X chromosome dosage compensation in Drosophila. We show that the four X chromosome genes studied undergo transcriptional bursting in male and female embryos. Mechanistically, our data reveal that transcriptional upregulation of male X chromosome genes is primarily mediated by a higher RNA polymerase II initiation rate and burst amplitude across the expression domain. In contrast, burst frequency is spatially modulated in nuclei within the expression domain in response to different transcription factor concentrations to tune the transcriptional response. Together, these data show how the local and global regulation of distinct burst parameters can establish the complex transcriptional outputs underpinning developmental patterning.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Masculino , Feminino , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cromossomo X/metabolismo , Mecanismo Genético de Compensação de Dose
2.
PLoS Biol ; 21(1): e3001956, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36649329

RESUMO

Regulation of mRNA degradation is critical for a diverse array of cellular processes and developmental cell fate decisions. Many methods for determining mRNA half-lives rely on transcriptional inhibition or metabolic labelling. Here, we use a non-invasive method for estimating half-lives for hundreds of mRNAs in the early Drosophila embryo. This approach uses the intronic and exonic reads from a total RNA-seq time series and Gaussian process regression to model the dynamics of premature and mature mRNAs. We show how regulation of mRNA stability is used to establish a range of mature mRNA dynamics during embryogenesis, despite shared transcription profiles. Using single-molecule imaging, we provide evidence that, for the mRNAs tested, there is a correlation between short half-life and mRNA association with P-bodies. Moreover, we detect an enrichment of mRNA 3' ends in P-bodies in the early embryo, consistent with 5' to 3' degradation occurring in P-bodies for at least a subset of mRNAs. We discuss our findings in relation to recently published data suggesting that the primary function of P-bodies in other biological contexts is mRNA storage.


Assuntos
Drosophila , Corpos de Processamento , Animais , Drosophila/genética , Drosophila/metabolismo , Imagem Individual de Molécula , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estabilidade de RNA/genética
3.
Genetics ; 204(2): 675-681, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27535927

RESUMO

Pore-forming members of the membrane attack complex/perforin-like (MACPF) protein superfamily perform well-characterized roles as mammalian immune effectors. For example, complement component 9 and perforin function to directly form pores in the membrane of Gram-negative pathogens or virally infected/transformed cells, respectively. In contrast, the only known MACPF protein in Drosophila melanogaster, Torso-like, plays crucial roles during development in embryo patterning and larval growth. Here, we report that in addition to these functions, Torso-like plays an important role in Drosophila immunity. However, in contrast to a hypothesized effector function in, for example, elimination of Gram-negative pathogens, we find that torso-like null mutants instead show increased susceptibility to certain Gram-positive pathogens such as Staphylococcus aureus and Enterococcus faecalis We further show that this deficit is due to a severely reduced number of circulating immune cells and, as a consequence, an impaired ability to phagocytose bacterial particles. Together these data suggest that Torso-like plays an important role in controlling the development of the Drosophila cellular immune system.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Larva/genética , Animais , Membrana Celular/genética , Membrana Celular/imunologia , Complexo de Ataque à Membrana do Sistema Complemento/imunologia , Proteínas de Drosophila/imunologia , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/imunologia , Enterococcus faecalis/imunologia , Enterococcus faecalis/patogenicidade , Sistema Imunitário/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/imunologia , Perforina/imunologia , Fagocitose/imunologia , Staphylococcus aureus/imunologia , Staphylococcus aureus/patogenicidade
4.
Proc Natl Acad Sci U S A ; 110(36): 14688-92, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23959885

RESUMO

Activation of the Drosophila receptor tyrosine kinase Torso (Tor) only at the termini of the embryo is achieved by the localized expression of the maternal gene Torso-like (Tsl). Tor has a second function in the prothoracic gland as the receptor for prothoracicotropic hormone (PTTH) that initiates metamorphosis. Consistent with the function of Tor in this tissue, Tsl also localizes to the prothoracic gland and influences developmental timing. Despite these commonalities, in our studies of Tsl we unexpectedly found that tsl and tor have opposing effects on body size; tsl null mutants are smaller than normal, rather than larger as would be expected if the PTTH/Tor pathway was disrupted. We further found that whereas both genes regulate developmental timing, tsl does so independently of tor. Although tsl null mutants exhibit a similar length delay in time to pupariation to tor mutants, in tsl:tor double mutants this delay is strikingly enhanced. Thus, loss of tsl is additive rather than epistatic to loss of tor. We also find that phenotypes generated by ectopic PTTH expression are independent of tsl. Finally, we show that a modified form of tsl that can rescue developmental timing cannot rescue terminal patterning, indicating that Tsl can function via distinct mechanisms in different contexts. We conclude that Tsl is not just a specialized cue for Torso signaling but also acts independently of PTTH/Tor in the control of body size and the timing of developmental progression. These data highlight surprisingly diverse developmental functions for this sole Drosophila member of the perforin-like superfamily.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Receptores Proteína Tirosina Quinases/genética , Análise de Variância , Animais , Animais Geneticamente Modificados , Padronização Corporal/genética , Tamanho Corporal/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/crescimento & desenvolvimento , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Feminino , Hibridização In Situ , Hormônios de Inseto/genética , Hormônios de Inseto/metabolismo , Larva/química , Larva/genética , Larva/crescimento & desenvolvimento , Modelos Lineares , Masculino , Metamorfose Biológica/genética , Mutação , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais/genética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...