Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Cell Biol ; 26(1): 100-112, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38191669

RESUMO

Transfer RNAs are essential for translating genetic information into proteins. The human genome contains hundreds of predicted tRNA genes, many in multiple copies. How their expression is regulated to control tRNA repertoires is unknown. Here we combined quantitative tRNA profiling and chromatin immunoprecipitation with sequencing to measure tRNA expression following the differentiation of human induced pluripotent stem cells into neuronal and cardiac cells. We find that tRNA transcript levels vary substantially, whereas tRNA anticodon pools, which govern decoding rates, are more stable among cell types. Mechanistically, RNA polymerase III transcribes a wide range of tRNA genes in human induced pluripotent stem cells but on differentiation becomes constrained to a subset we define as housekeeping tRNAs. This shift is mediated by decreased mTORC1 signalling, which activates the RNA polymerase III repressor MAF1. Our data explain how tRNA anticodon pools are buffered to maintain decoding speed across cell types and reveal that mTORC1 drives selective tRNA expression during differentiation.


Assuntos
Anticódon , Células-Tronco Pluripotentes Induzidas , Humanos , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Expressão Gênica
2.
Front Biosci (Landmark Ed) ; 27(1): 13, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35090318

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) first occurred in Wuhan (China) in December of 2019. Since the outbreak, it has accumulated mutations on its coding sequences to optimize its adaptation to the human host. The identification of its genetic variants has become crucial in tracking and evaluating their spread across the globe. METHODS: In this study, we compared 320,338 SARS-CoV-2 genomes isolated from all over the world to the first sequenced genome in Wuhan, China. To this end, we analysed over time the codon usage patterns of SARS-CoV-2 genes encoding for the membrane protein (M), envelope (E), spike surface glycoprotein (S), nucleoprotein (N), RNA-dependent RNA polymerase (RdRp) and ORF1ab. RESULTS: We found that genes coding for the proteins N and S diverged more rapidly since the outbreak by accumulating mutations. Interestingly, all genes show a deoptimization of their codon usage with respect to the human host. Our findings suggest a general evolutionary trend of SARS-CoV-2, which evolves towards a sub-optimal codon usage bias to favour the host survival and its spread. Furthermore, we found that S protein and RdRp are more subject to an increasing purifying pressure over time, which implies that these proteins will reach a lower tendency to accept mutations. In contrast, proteins N and M tend to evolve more under the action of mutational bias, thus exploring a large region of their sequence space. CONCLUSIONS: Overall, our study shed more light on the evolution of SARS-CoV-2 genes and their adaptation to humans, helping to foresee their mutation patterns and the emergence of new variants.


Assuntos
COVID-19 , Uso do Códon , Genoma Viral/genética , Humanos , Filogenia , SARS-CoV-2
3.
Genetica ; 149(4): 217-237, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34254217

RESUMO

The biological meaning of low complexity regions in the proteins of Plasmodium species is a topic of discussion in evolutionary biology. There is a debate between selectionists and neutralists, who either attribute or do not attribute an effect of low-complexity regions on the fitness of these parasites, respectively. In this work, we comparatively study 22 Plasmodium species to understand whether their low complexity regions undergo a neutral or, rather, a selective and species-dependent evolution. The focus is on the connection between the codon repertoire of the genetic coding sequences and the occurrence of low complexity regions in the corresponding proteins. The first part of the work concerns the correlation between the length of plasmodial proteins and their propensity at embedding low complexity regions. Relative synonymous codon usage, entropy, and other indicators reveal that the incidence of low complexity regions and their codon bias is species-specific and subject to selective evolutionary pressure. We also observed that protein length, a relaxed selective pressure, and a broad repertoire of codons in proteins, are strongly correlated with the occurrence of low complexity regions. Overall, it seems plausible that the codon bias of low-complexity regions contributes to functional innovation and codon bias enhancement of proteins on which Plasmodium species rest as successful evolutionary parasites.


Assuntos
Uso do Códon , Evolução Molecular , Plasmodium/genética , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Sequências Repetitivas de Aminoácidos , Seleção Genética
4.
Gene ; 778: 145475, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33549710

RESUMO

We study the correlation between the codon usage bias of genetic sequences and the network features of protein-protein interaction (PPI) in bacterial species. We use PCA techniques in the space of codon bias indices to show that genes with similar patterns of codon usage have a significantly higher probability that their encoded proteins are functionally connected and interacting. Importantly, this signal emerges when multiple aspects of codon bias are taken into account at the same time. The present study extends our previous observations on E. coli over a wide set of 34 bacteria. These findings could allow for future investigations on the possible effects of codon bias on the topology of the PPI network, with the aim of improving existing bioinformatics methods for predicting protein interactions.


Assuntos
Bactérias/genética , Uso do Códon , Mapas de Interação de Proteínas , Proteínas de Bactérias/genética , Biologia Computacional , Evolução Molecular , Seleção Genética
5.
Curr Genomics ; 22(7): 541-549, 2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35386436

RESUMO

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel virus that first occurred in Wuhan in December 2019. The spike glycoproteins and nucleocapsid proteins are the most common targets for the development of vaccines and antiviral drugs. Objective: We herein analyze the rate of evolution along with the sequences of spike and nucleocapsid proteins in relation to the spatial locations of their epitopes, previously suggested to contribute to the immune response caused by SARS-CoV-2 infections. Methods: We compare homologous proteins of seven human coronaviruses: HCoV-229E, HCoV-OC43, SARS-CoV, HCoV-NL63, HCoV-HKU1, MERS-CoV, and SARS-CoV-2. We then focus on the local, structural order-disorder propensity of the protein regions where the SARS-CoV-2 epitopes are located. Results: We show that most of nucleocapsid protein epitopes overlap the RNA-binding and dimerization domains, and some of them are characterized by a low rate of evolutions. Similarly, spike protein epitopes are preferentially located in regions that are predicted to be ordered and well- conserved, in correspondence of the heptad repeats 1 and 2. Interestingly, both the receptor-binding motif to ACE2 and the fusion peptide of spike protein are characterized by a high rate of evolution. Conclusion: Our results provide evidence for conserved epitopes that might help develop broad-spectrum SARS-CoV-2 vaccines.

6.
Viruses ; 12(5)2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32366025

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which first occurred in Wuhan (China) in December of 2019, causes a severe acute respiratory illness with a high mortality rate, and has spread around the world. To gain an understanding of the evolution of the newly emerging SARS-CoV-2, we herein analyzed the codon usage pattern of SARS-CoV-2. For this purpose, we compared the codon usage of SARS-CoV-2 with that of other viruses belonging to the subfamily of Orthocoronavirinae. We found that SARS-CoV-2 has a high AU content that strongly influences its codon usage, which appears to be better adapted to the human host. We also studied the evolutionary pressures that influence the codon usage of five conserved coronavirus genes encoding the viral replicase, spike, envelope, membrane and nucleocapsid proteins. We found different patterns of both mutational bias and natural selection that affect the codon usage of these genes. Moreover, we show here that the two integral membrane proteins (matrix and envelope) tend to evolve slowly by accumulating nucleotide mutations on their corresponding genes. Conversely, genes encoding nucleocapsid (N), viral replicase and spike proteins (S), although they are regarded as are important targets for the development of vaccines and antiviral drugs, tend to evolve faster in comparison to the two genes mentioned above. Overall, our results suggest that the higher divergence observed for the latter three genes could represent a significant barrier in the development of antiviral therapeutics against SARS-CoV-2.


Assuntos
Betacoronavirus/genética , Códon , Coronavirus/genética , Genoma Viral , Composição de Bases , Betacoronavirus/química , Betacoronavirus/fisiologia , Evolução Biológica , Coronavirus/classificação , Genes Virais , Especificidade de Hospedeiro , Mutação , Filogenia , SARS-CoV-2
7.
Sci Rep ; 10(1): 4467, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32161300

RESUMO

In this study, we analyze the role of different structural variants of proteins in the speciation processes. We separate human and mouse proteomes (taken as a reference) into three previously defined variants of disorder: ordered proteins (ORDPs), structured proteins with intrinsically disordered protein regions (IDPRs), and intrinsically disordered proteins (IDPs). Then, using the representation we call here Forsdyke plot, we study the correlation of DNA divergence with the corresponding protein (phenotypic) divergence in the three variants, comparing human and mouse coding sequences with their homologs from 26 eukaryotes. The parameters of the correlation are related to the speciation process. We find that the three variants of disordered proteins are differently related to the speciation process. Specifically, IDPs phenotypically diverge earlier than ORDPs and IDPRs. ORDPs diverge later but are phenotypically more reactive to nucleotide mutations than IDPRs and IDPs. Finally, IDPRs appear to diverge phenotypically later than IDPs, like ORDPs, but they are prone to accept mutations with rates that are similar to those of IDPs. We conclude that IDPs are involved in the early stages of the speciation process, whereas mutations in ORDPs, once speciation is initiated, accelerate phenotypic divergence.


Assuntos
Proteínas Intrinsicamente Desordenadas/genética , Mutação , Ácidos Nucleicos/genética , Algoritmos , Animais , Biomarcadores , Evolução Molecular , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Camundongos , Modelos Teóricos , Proteômica/métodos , Especificidade da Espécie
8.
J Mol Evol ; 88(2): 164-178, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31820049

RESUMO

In this study, we perform a systematic analysis of evolutionary forces (i.e., mutational bias and natural selection) that shape the codon usage bias of human genes encoding proteins characterized by different flavors of intrinsic disorder. Well-structured proteins are expected to be more under control by purifying natural selection than intrinsically disordered proteins because one or few mutations (even synonymous) in the genes can result in a protein that no longer folds correctly. On the contrary, intrinsically disordered proteins are thought to evolve more rapidly than well-folded proteins, due to a relaxed purifying natural selection and an increased role of mutational bias. Using different bioinformatic tools, we find evidence that codon usage in IDPs is not only affected by a basic mutational bias, but it is also more selectively constrained than the rest of the human proteome. We speculate that intrinsically disordered proteins have not only a high tolerance to mutations but also a selective propensity to preserve their structural disorder under physiological conditions. Additionally, we confirm not only that intrinsically disordered proteins are preferentially encoded by GC-rich genes, but also that they are characterized by the highest fraction of CpG sites in the sequences, implying a higher susceptibility to methylation resulting in C-T transition mutations. Overall, our results corroborate the essential role of intrinsic disorder for the evolutionary adaptability and evolvability of proteins, offering new insight about protein evolution not only in terms of functional properties and roles in diseases but also in terms of evolutionary forces they are subjected to.


Assuntos
Uso do Códon , Evolução Molecular , Proteínas Intrinsicamente Desordenadas/genética , Proteoma/genética , Seleção Genética , Composição de Bases , Biologia Computacional , Humanos , Modelos Genéticos , Mutação
9.
PLoS One ; 14(8): e0217889, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31425549

RESUMO

Many studies about classification and the functional annotation of intrinsically disordered proteins (IDPs) are based on either the occurrence of long disordered regions or the fraction of disordered residues in the sequence. Taking into account both criteria we separate the human proteome, taken as a case study, into three variants of proteins: i) ordered proteins (ORDPs), ii) structured proteins with intrinsically disordered regions (IDPRs), and iii) intrinsically disordered proteins (IDPs). The focus of this work is on the different functional roles of IDPs and IDPRs, which up until now have been generally considered as a whole. Previous studies assigned a large set of functional roles to the general category of IDPs. We show here that IDPs and IDPRs have non-overlapping functional spectra, play different roles in human diseases, and deserve to be treated as distinct categories of proteins. IDPs enrich only a few classes, functions, and processes: nucleic acid binding proteins, chromatin binding proteins, transcription factors, and developmental processes. In contrast, IDPRs are spread over several functional protein classes and GO annotations which they partly share with ORDPs. As regards to diseases, we observe that IDPs enrich only cancer-related proteins, at variance with previous results reporting that IDPs are widespread also in cardiovascular and neurodegenerative pathologies. Overall, the operational separation of IDPRs from IDPs is relevant towards correct estimates of the occurrence of intrinsically disordered proteins in genome-wide studies and in the understanding of the functional spectra associated to different flavors of protein disorder.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Bases de Dados de Proteínas , Humanos , Proteínas Intrinsicamente Desordenadas/genética , Conformação Proteica , Dobramento de Proteína , Elementos Estruturais de Proteínas , Proteoma/química , Proteoma/genética , Proteoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...