Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 13(1): 3873, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36890202

RESUMO

Antarctic Bottom Water (AABW) stores heat and gases over decades to centuries after contact with the atmosphere during formation on the Antarctic shelf and subsequent flow into the global deep ocean. Dense water from the western Ross Sea, a primary source of AABW, shows changes in water properties and volume over the last few decades. Here we show, using multiple years of moored observations, that the density and speed of the outflow are consistent with a release from the Drygalski Trough controlled by the density in Terra Nova Bay (the "accelerator") and the tidal mixing (the "brake"). We suggest tides create two peaks in density and flow each year at the equinoxes and could cause changes of ~ 30% in the flow and density over the 18.6-year lunar nodal tide. Based on our dynamic model, we find tides can explain much of the decadal variability in the outflow with longer-term changes likely driven by the density in Terra Nova Bay.

3.
Sci Rep ; 11(1): 2246, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500521

RESUMO

Approximately 25% of Antarctic Bottom Water has its origin as dense water exiting the western Ross Sea, but little is known about what controls the release of dense water plumes from the Drygalski Trough. We deployed two moorings on the slope to investigate the water properties of the bottom water exiting the region at Cape Adare. Salinity of the bottom water has increased in 2018 from the previous measurements in 2008-2010, consistent with the observed salinity increase in the Ross Sea. We find High Salinity Shelf Water from the Drygalski Trough contributes to two pulses of dense water at Cape Adare. The timing and magnitude of the pulses is largely explained by an inverse relationship with the tidal velocity in the Ross Sea. We suggest that the diurnal and low frequency tides in the western Ross Sea may control the magnitude and timing of the dense water outflow.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...