Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 43(10): 3652-5, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19544868

RESUMO

Chloride, which comes into the forest ecosystem largely from the sea as aerosol (and has been in the past assumed to be inert), causes chlorination of soil organic matter. Studies of the chlorination showed that the content of organically bound chlorine in temperate forest soils is higher than that of chloride, and various chlorinated compounds are produced. Our study of chlorination of organic matter in the fermentation horizon of forest soil using radioisotope 36Cl and tracer techniques shows that microbial chlorination clearly prevails over abiotic, chlorination of soil organic matter being enzymatically mediated and proportional to chloride content and time. Long-term (>100 days) chlorination leads to more stable chlorinated substances contained in the organic layer of forest soil (overtime; chlorine is bound progressively more firmly in humic acids) and volatile organochlorines are formed. Penetration of chloride into microorganisms can be documented by the freezing/thawing technique. Chloride absorption in microorganisms in soil and in litter residues in the fermentation horizon complicates the analysis of 36Cl-chlorinated soil. The results show that the analytical procedure used should be tested for every soil type under study.


Assuntos
Bactérias/metabolismo , Cloretos/química , Recuperação e Remediação Ambiental/métodos , Halogenação , Compostos Orgânicos/metabolismo , Solo/análise , Árvores/microbiologia , Biodegradação Ambiental , Cloretos/análise , Congelamento , Esterilização , Fatores de Tempo
2.
Folia Microbiol (Praha) ; 49(2): 117-22, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15227781

RESUMO

Soils have been shown to possess a strong microbial trichloroacetic acid (TCA)-degrading activity. High TCA-degradation rate was also observed during soil extraction with water. For correct measurements of TCA levels in soil all TCA-degrading activities have to be inhibited immediately after sampling before analysis. We used rapid freezing of soil samples (optimally in liquid nitrogen) with subsequent storage and slow thawing before analysis as an efficient technique for suppressing the degradation. Frozen soil samples stored overnight at -20 degrees C and then thawed slowly exhibited very low residual TCA-degrading activity for several hours. Omitting the above procedure could lead to the confusing differences between the TCA levels previously reported in the literature.


Assuntos
Microbiologia do Solo , Solo/análise , Ácido Tricloroacético/análise , Biodegradação Ambiental , Técnicas de Química Analítica/métodos , Congelamento , Ácido Tricloroacético/metabolismo
3.
Chemosphere ; 56(4): 327-33, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15183994

RESUMO

Independently from its origin, trichloroacetic acid (TCA) as a phytotoxic substance affects coniferous trees. Its uptake, distribution and degradation were thus investigated in the Norway spruce/soil-system using 14C labeling. TCA is distributed in the tree mainly by the transpiration stream. As in soil, TCA seems to be degraded microbially, presumably by phyllosphere microorganisms in spruce needles. Indication of TCA biodegradation in trees is shown using both antibiotics and axenic plants.


Assuntos
Pinaceae/metabolismo , Folhas de Planta/metabolismo , Solo/análise , Ácido Tricloroacético/farmacocinética , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Biodegradação Ambiental , Radioisótopos de Carbono , Europa (Continente) , Neomicina , Rolitetraciclina , Contagem de Cintilação , Estreptomicina , Fatores de Tempo , Árvores/metabolismo
4.
Chemosphere ; 52(2): 437-42, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12738267

RESUMO

Trichloroacetic acid (TCA) is a secondary atmospheric pollutant formed by photooxidation of chlorinated solvents in the troposphere--it has, however, recently been ranked among natural organohalogens. Its herbicidal properties might be one of the factors adversely affecting forest health. TCA accumulates rapidly in conifer needles and influences the detoxification capacity in the trees. The aim of the investigations--a survey of which is briefly given here--was to elucidate the uptake, distribution and fate of TCA in Norway spruce. For this purpose young nursery-grown plants of Norway spruce (Picea abies (L.) Karst.) were exposed to [1,2-14C]TCA and the fate of the compound was followed in needles, wood, roots, soil and air with appropriate radio-indicator methods. As shown by radioactivity monitoring, the uptake of TCA from soil by roots proceeded most rapidly into current needles at the beginning of the TCA treatment and was redistributed at later dates so that TCA content in older needles increased. The only product of TCA metabolism/biodegradation found in the plant/soil-system was CO(2) (and corresponding assimilates). TCA biodegradation in soil depends on TCA concentration, soil humidity and other factors.


Assuntos
Poluentes Atmosféricos/análise , Picea/metabolismo , Poluentes do Solo/análise , Solo/análise , Ácido Tricloroacético/química , Ácido Tricloroacético/farmacocinética , Poluentes Atmosféricos/farmacocinética , Biodegradação Ambiental , Dióxido de Carbono/análise , Radioisótopos de Carbono , Glutationa Transferase/metabolismo , Umidade , Picea/química , Estruturas Vegetais/química , Estruturas Vegetais/metabolismo , Microbiologia do Solo , Poluentes do Solo/farmacocinética , Árvores
5.
Chemosphere ; 50(3): 303-9, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12656249

RESUMO

Trichloroacetic acid (TCA) as a phytotoxic substance affects health status of coniferous trees. It is known as a secondary air pollutant (formed by photooxidation of tetrachloroethene and 1,1,1-trichloroethane) and as a product of chlorination of humic substances in soil. Its break-down in soil, however, influences considerably the TCA level, i.e. the extent of TCA uptake by spruce roots. In connection with our investigations of TCA effects on Norway spruce, microbial processes in soil were studied using 14C-labeling. It was shown that TCA degradation in soil is a fast process depending on TCA concentration, soil properties, humidity and temperature. As a result, the TCA level in soil is determined by a steady state between uptake from the atmosphere, formation in soil, leaching and degradation. The process of TCA degradation in soil thus participates significantly in the chlorine cycle in forest ecosystems.


Assuntos
Picea/metabolismo , Solo , Ácido Tricloroacético/metabolismo , Biodegradação Ambiental , Contagem de Cintilação
6.
In Vitro Cell Dev Biol ; 26(8): 803-14, 1990 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-2394675

RESUMO

A serum-free primary culture system is described which allows normal rat mammary epithelial cells (RMECs) embedded within a reconstituted basement membrane to undergo extensive growth and functional differentiation as detected by synthesis and secretion of the milk products casein and lipid. RMECs isolated from mammary glands of immature virgin rats were seeded within an extracellular matrix preparation derived from the Engelbreth-Holm-Swarm sarcoma and cultured in a serum-free medium consisting of Dulbecco's modified Eagle's medium-F12 containing insulin, prolactin, progesterone, hydrocortisone, epidermal growth factor, bovine serum albumin, transferrin, and ascorbic acid. Casein synthesis and secretion were documented at the electron microscopic level as well as by an enzyme-linked immunosorbent assay (ELISA) assay using a polyclonal antibody against total rat caseins. Numerous secretory vesicles with casein micelles were noted near the apical surface of the RMECs, and secreted casein was observed in the lumen. These ultrastructural data were confirmed by the ELISA assay which showed that microgram amounts of casein per well were synthesized by the RMECs and that the amount of casein increased with time in culture. Using immunoblot analysis it was demonstrated that the full complement of casein proteins was synthesized. In addition to casein protein, beta-casein mRNA levels were shown to increase with time. Synthesized lipid was detected at both the light and electron microscopic levels. Phase contrast photomicrographs demonstrated extensive intracellular lipid accumulation within the ductal and lobuloalveolarlike colonies, and at the electron micrograph level, lipid droplets were predominantly localized near the apical surface of the RMECs. The lipid nature of these droplets was verified by oil red O staining. Results from this study demonstrate that RMECs from immature virgin rats proliferate extensively and rapidly develop the capacity to synthesize and secrete casein and lipid when grown within a reconstituted basement membrane under defined serum-free conditions. This unique system should thus serve as an excellent model in which the regulation of mammary development and gene expression can be investigated.


Assuntos
Caseínas/biossíntese , Glândulas Mamárias Animais/citologia , Animais , Membrana Basal/fisiologia , Northern Blotting , Western Blotting , Caseínas/genética , Diferenciação Celular , Células Cultivadas , Meios de Cultura , Células Epiteliais , Matriz Extracelular/fisiologia , Lactação , Metabolismo dos Lipídeos , Microscopia Eletrônica , RNA Mensageiro/genética , Ratos , Ratos Endogâmicos
7.
J Appl Physiol (1985) ; 67(2): 804-10, 1989 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-2507501

RESUMO

Adult male and female Sprague-Dawley rats were trained on a horizontal treadmill for 0, 1, 3, 5, or 7 days/wk for 10 wk. Speed and duration were progressively increased over 5 wk to a maximum of 20 m/min for 1 h. Between weeks 9 and 10 of training, animals were placed on the nonmoving treadmill, and blood (500 microliters) was sampled via chronic venous cannulas 30 min before, 0, 10, 20, 30, 45, and 60 min during exercise, and 15, 30, 60, 90, and 120 min after exercise. In another study, resting animals in the various groups were injected with thyrotropin-releasing hormone (TRH; 2 micrograms/kg for males and 0.4 microgram/kg for females) to determine pituitary prolactin responsiveness. In males, exercise induced a significant increase in plasma prolactin levels, with the greatest increase observed in the least trained and the smallest increase in the most highly trained animals. Female rats displayed the opposite trend with the greatest increase in prolactin secretion observed in the highest trained and the smallest increase observed in the least trained animals. TRH induced similar increases in plasma prolactin in all male groups, whereas TRH-induced prolactin release was greatest in the highest trained and smallest in the least trained females. The reduced prolactin response in highly trained males may reflect their acclimation to repetitive exercise stress, whereas the enhanced response in the highly trained female rats appears to result from increased pituitary sensitivity to prolactin-releasing factors.


Assuntos
Esforço Físico , Prolactina/metabolismo , Animais , Peso Corporal , Corticosterona/sangue , Ingestão de Alimentos , Estro , Feminino , Masculino , Condicionamento Físico Animal , Radioimunoensaio , Ratos , Ratos Endogâmicos , Fatores Sexuais , Hormônio Liberador de Tireotropina/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...