Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 123(40): 8457-8471, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31525044

RESUMO

Surface properties of room temperature ionic liquids (RTILs) consisting of half neutralized diamine cations (H2N-(CH2)n-NH3+, n = 2, 4) and triflate anions have been investigated by molecular dynamics simulations, based on an empirical atomistic force field. Planar slabs periodically repeated in 2D have been considered, and the temperature range 260 ≤ T ≤ 360 K has been covered, extending from below the melting and glass point to the equilibrium liquid range of the diamine compounds under investigation. Addition of water at 1% weight concentration allowed us to investigate the kinetics of water absorption through the RTIL surface, and to characterize the structural and dynamical properties of subsurface water. Animations of the simulation trajectory highlight the quick absorption of water molecules, progressing downhill in free energy and taking place without apparent intermediate kinetic stages. To verify and quantify these observations, a variant of the umbrella sampling algorithm has been applied to compute the variation of excess free energy upon displacing a water molecule along the normal to the surface, from the center of the slab to the vapor phase. The results provide a comprehensive picture of the thermodynamic properties underlying the kinetics of water absorption and evaporation through the surface, and they also provide the ratio of the equilibrium density of water in the vapor and liquid phase at the average concentration considered by simulations. A variety of properties such as the surface energy, the 90-10% width of the profile, the layering of different species at the interface, and the electrostatic double layer at the surface are computed and discussed, focusing on the effect of water contamination on all of them.

2.
J Chem Phys ; 136(20): 204510, 2012 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-22667574

RESUMO

The glass transition in prototypical room temperature ionic liquids has been investigated by molecular dynamics simulations based on an Amber-like empirical force field. Samples of [C(4)mim][PF(6)], [C(4)mim][Tf(2)N], and [C(3)mim][Tf(2)N] have been quenched from the liquid phase at T = 500 to a glassy state at T ∼ 0 K in discontinuous steps of 20 K every 1.2 ns. The glass temperature estimated by simulation (T(g) = 209 K for [C(4)mim][PF(6)], T(g) = 204 K for [C(4)mim][Tf(2)N], and T(g) = 196 K for [C(3)mim][Tf(2)N]) agrees semi-quantitatively with the experimental values (T(g) = 193÷196 K for [C(4)mim][PF(6)], T(g) = 186÷189 K for [C(4)mim][Tf(2)N], and T(g) = 183 K for [C(3)mim][Tf(2)N]). A model electron density is introduced to identify voids in the system. The temperature dependence of the size distribution of voids provided by simulation reproduce well the experimental results of positron annihilation lifetime spectroscopy reported in G. Dlubek, Y. Yu, R. Krause-Rehberg, W. Beichel, S. Bulut, N. Pogodina, I. Krossing, and Ch. Friedrich, J. Chem. Phys. 133, 124502 (2010), with only one free parameter needed to fit the experimental data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...