Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Biol ; 44(7): 261-272, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38828991

RESUMO

The protein tyrosine phosphatase Src homology region 2 domain-containing phosphatase-1 (SHP-1) plays an important role in modulating glucose and lipid homeostasis. We previously suggested a potential role of SHP-1 in the regulation of peroxisome proliferator-activated receptor γ2 (PPARγ2) expression and activity but the mechanisms were unexplored. PPARγ2 is the master regulator of adipogenesis, but how its activity is regulated by tyrosine phosphorylation is largely unknown. Here, we found that SHP-1 binds to PPARγ2 primarily via its N-terminal SH2-domain. We confirmed the phosphorylation of PPARγ2 on tyrosine-residue 78 (Y78), which was reduced by SHP-1 in vitro resulting in decreased PPARγ2 stability. Loss of SHP-1 led to elevated, agonist-induced expression of the classical PPARγ2 targets FABP4 and CD36, concomitant with increased lipid content in cells expressing PPARγ2, an effect blunted by abrogation of PPARγ2 phosphorylation. Collectively, we discovered that SHP-1 affects the stability of PPARγ2 through dephosphorylation thereby influencing adipogenesis.


Assuntos
Adipogenia , PPAR gama , Proteína Tirosina Fosfatase não Receptora Tipo 6 , PPAR gama/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Fosforilação , Humanos , Animais , Camundongos , Antígenos CD36/metabolismo , Antígenos CD36/genética , Células HEK293 , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Estabilidade Proteica , Células 3T3-L1 , Domínios de Homologia de src , Ligação Proteica
2.
Hepatology ; 59(5): 1803-15, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24327268

RESUMO

UNLABELLED: Hepatocyte-specific Shp1 knockout mice (Ptpn6(H-KO)) are protected from hepatic insulin resistance evoked by high-fat diet (HFD) feeding for 8 weeks. Unexpectedly, we report herein that Ptpn6(H-KO) mice fed an HFD for up to 16 weeks are still protected from insulin resistance, but are more prone to hepatic steatosis, as compared with their HFD-fed Ptpn6(f/f) counterparts. The livers from HFD-fed Ptpn6(H-KO) mice displayed 1) augmented lipogenesis, marked by increased expression of several hepatic genes involved in fatty acid biosynthesis, 2) elevated postprandial fatty acid uptake, and 3) significantly reduced lipid export with enhanced degradation of apolipoprotein B (ApoB). Despite more extensive hepatic steatosis, the inflammatory profile of the HFD-fed Ptpn6(H-KO) liver was similar (8 weeks) or even improved (16 weeks) as compared to their HFD-fed Ptpn6(f/f) littermates, along with reduced hepatocellular damage as revealed by serum levels of hepatic enzymes. Interestingly, comparative microarray analysis revealed a significant up-regulation of peroxisome proliferator-activated receptor gamma (PPARγ) gene expression, confirmed by quantitative polymerase chain reaction. Elevated PPARγ nuclear activity also was observed and found to be directly regulated by Shp1 in a cell-autonomous manner. CONCLUSION: These findings highlight a novel role for hepatocyte Shp1 in the regulation of PPARγ and hepatic lipid metabolism. Shp1 deficiency prevents the development of severe hepatic inflammation and hepatocellular damage in steatotic livers, presenting hepatocyte Shp1 as a potential novel mediator of nonalcoholic fatty liver diseases in obesity.


Assuntos
Fígado Gorduroso/etiologia , Fígado/metabolismo , Obesidade/complicações , PPAR gama/fisiologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/fisiologia , Animais , Dieta Hiperlipídica , Ácidos Graxos/metabolismo , Resistência à Insulina , Lipogênese , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...