Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 27(10): 4201-4217, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35821415

RESUMO

The mechanisms underlying the dichotomic cortical/basal ganglia dopaminergic abnormalities in schizophrenia are unclear. Astrocytes are important non-neuronal modulators of brain circuits, but their role in dopaminergic system remains poorly explored. Microarray analyses, immunohistochemistry, and two-photon laser scanning microscopy revealed that Dys1 hypofunction increases the reactivity of astrocytes, which express only the Dys1A isoform. Notably, behavioral and electrochemical assessments in mice selectively lacking the Dys1A isoform unraveled a more prominent impact of Dys1A in behavioral and dopaminergic/D2 alterations related to basal ganglia, but not cortical functioning. Ex vivo electron microscopy and protein expression analyses indicated that selective Dys1A disruption might alter intracellular trafficking in astrocytes, but not in neurons. In agreement, Dys1A disruption only in astrocytes resulted in decreased motivation and sensorimotor gating deficits, increased astrocytic dopamine D2 receptors and decreased dopaminergic tone within basal ganglia. These processes might have clinical relevance because the caudate, but not the cortex, of patients with schizophrenia shows a reduction of the Dys1A isoform. Therefore, we started to show a hitherto unknown role for the Dys1A isoform in astrocytic-related modulation of basal ganglia behavioral and dopaminergic phenotypes, with relevance to schizophrenia.


Assuntos
Dopamina , Disbindina , Esquizofrenia , Animais , Camundongos , Astrócitos/metabolismo , Gânglios da Base/metabolismo , Dopamina/metabolismo , Disbindina/metabolismo , Esquizofrenia/genética
2.
Bioorg Med Chem ; 59: 116670, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35202967

RESUMO

Norbormide [5-(α-hydroxy-α-2-pyridylbenzyl)-7-(α-2-pyridylbenzylidene)-5-norbornene-2,3-dicarboximide] (NRB, 1), an existing but infrequently used rodenticide, is known to be uniquely toxic to rats, but relatively harmless to other rodents and mammals. As a vasoactive agent, NRB induces a species-specific vasocontractile effect that is restricted to the peripheral arteries of the rat. Despite the precise mechanisms behind this phenomenon having yet to be fully clarified, it is postulated that the molecular target of NRB could be located within the plasma membrane of rat peripheral artery myocytes (e.g. rat caudal artery myocytes). As such, the primary objective of this study was to develop a fluorescently labelled derivative of NRB to investigate its subcellular distribution/localization in both NRB-sensitive (freshly isolated rat caudal artery myocytes, FIRCAMs) and NRB-insensitive (human hepatic stellate, LX2) cells. Of the examples prepared, lead structure endo-NRB-NBD-bPA subsequently demonstrated retention of the parent toxicant's pharmacological profile (in terms of its ability to induce both a vasocontractile response in rat caudal artery rings in vitro, and a lethal end-point in rats in vivo). Endo-NRB-NBD-bPA was also shown to be significantly less permeable (an integral feature in the design of fluorescent probes targeting cell-surface receptors) to both LX2 cells and FIRCAMs. Disappointingly, no fluorescence could be observed on the plasma membrane of FIRCAMs stained with endo-NRB-NBD-bPA.


Assuntos
Corantes Fluorescentes , Norbornanos , Animais , Corantes Fluorescentes/metabolismo , Fígado/metabolismo , Mamíferos , Norbornanos/química , Norbornanos/metabolismo , Norbornanos/farmacologia , Ratos
3.
Methods Mol Biol ; 2275: 279-289, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34118044

RESUMO

Fluorescent live imaging on Drosophila melanogaster is a microscopy technique in rapid expansion. The growing number of probes available to detect cellular components and the relatively easy genetic manipulation of fruit fly make this model one of the most used for in vivo analysis of several physiological and/or pathological processes. Here we describe the chemical synthesis of two norbormide-derived BODIPY-conjugated fluorescent probes (NRBMC009 and NRBZLW0047). Moreover, we describe the larval dissection method, and subsequent live imaging acquisition. Both probes are able to label mitochondria in different Drosophila larval tissues, which allows for the characterization of mitochondrial morphological alterations by using a simple and quick method that avoids the fixation artefacts that often occur in immunofluorescence studies.


Assuntos
Drosophila melanogaster/metabolismo , Corantes Fluorescentes/química , Mitocôndrias/metabolismo , Norbornanos/química , Animais , Larva , Microscopia Confocal , Microscopia de Fluorescência , Imagem Molecular
4.
Front Neurosci ; 13: 1202, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31803000

RESUMO

Defects in the endoplasmic reticulum (ER) membrane shaping and interaction with other organelles seem to be a crucial mechanism underlying Hereditary Spastic Paraplegia (HSP) neurodegeneration. REEP1, a transmembrane protein belonging to TB2/HVA22 family, is implicated in SPG31, an autosomal dominant form of HSP, and its interaction with Atlastin/SPG3A and Spastin/SPG4, the other two major HSP linked proteins, has been demonstrated to play a crucial role in modifying ER architecture. In addition, the Drosophila ortholog of REEP1, named ReepA, has been found to regulate the response to ER neuronal stress. Herein we investigated the role of ReepA in ER morphology and stress response. ReepA is upregulated under stress conditions and aging. Our data show that ReepA triggers a selective activation of Ire1 and Atf6 branches of Unfolded Protein Response (UPR) and modifies ER morphology. Drosophila lacking ReepA showed Atf6 and Ire1 activation, expansion of ER sheet-like structures, locomotor dysfunction and shortened lifespan. Furthermore, we found that naringenin, a flavonoid that possesses strong antioxidant and neuroprotective activity, can rescue the cellular phenotypes, the lifespan and locomotor disability associated with ReepA loss of function. Our data highlight the importance of ER homeostasis in nervous system functionality and HSP neurodegenerative mechanisms, opening new opportunities for HSP treatment.

5.
PLoS One ; 14(4): e0211169, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30958824

RESUMO

In this study we investigated the performance of two norbormide (NRB)-derived fluorescent probes, NRBMC009 (green) and NRBZLW0047 (red), on dissected, living larvae of Drosophila, to verify their potential application in live cell imaging confocal microscopy. To this end, larval tissues were exposed to NRB probes alone or in combination with other commercial dyes or GFP-tagged protein markers. Both probes were rapidly internalized by most tissues (except the central nervous system) allowing each organ in the microscope field to be readily distinguished at low magnification. At the cellular level, the probes showed a very similar distribution (except for fat bodies), defined by loss of signal in the nucleus and plasma membrane, and a preferential localization to endoplasmic reticulum (ER) and mitochondria. They also recognized ER and mitochondrial phenotypes in the skeletal muscles of fruit fly models that had loss of function mutations in the atlastin and mitofusin genes, suggesting NRBMC009 and NRBZLW0047 as potentially useful screening tools for characterizing ER and mitochondria morphological alterations. Feeding of larvae and adult Drosophilae with the NRB-derived dyes led to staining of the gut and its epithelial cells, revealing a potential role in food intake assays. In addition, when flies were exposed to either dye over their entire life cycle no apparent functional or morphological abnormalities were detected. Rapid internalization, a bright signal, a compatibility with other available fluorescent probes and GFP-tagged protein markers, and a lack of toxicity make NRBZLW0047 and, particularly, NRBMC009 highly performing fluorescent probes for live cell microscopy studies and food intake assays in Drosophila.


Assuntos
Drosophila melanogaster/fisiologia , Corantes Fluorescentes/administração & dosagem , Microscopia Intravital/métodos , Norbornanos/administração & dosagem , Animais , Drosophila melanogaster/anatomia & histologia , Ingestão de Alimentos , Feminino , Corantes Fluorescentes/química , Corantes Fluorescentes/toxicidade , Absorção Gastrointestinal , Trato Gastrointestinal/diagnóstico por imagem , Proteínas de Fluorescência Verde/química , Larva/fisiologia , Masculino , Microscopia Confocal , Microscopia de Fluorescência , Modelos Animais , Norbornanos/química , Norbornanos/toxicidade , Testes de Toxicidade Crônica
6.
Front Pharmacol ; 9: 1055, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30319407

RESUMO

Background: Norbormide (NRB) is a selective rat toxicant endowed with vasoconstrictor activity confined to the rat peripheral arteries. In a recent work we used a fluorescent derivative of NRB (NRB-AF12), obtained by coupling the NBD fluorophore to the parent molecule via a linker, in order to gain information about the possible site of action of the unlabeled compound. We found that NRB-AF12 labeled intracellular organelles in both NRB-sensitive and -insensitive cells and we accordingly proposed its use as a scaffold for the development of a new class of fluorescent probes. In this study, we examined the fluorescent properties of a BODIPY FL-conjugated NRB probe (MC009) developed: (A) to verify if NRB distribution could be influenced by the attached fluorophore; (B) to improve the fluorescent performance of NRB-AF12. Methods: MC009 characteristics were investigated by confocal fluorescence microscopy, in freshly isolated rat caudal artery myocytes (FIRCAM) and in LX2 cells, representative of NRB-sensitive and insensitive cells, respectively. Main results: In both FIRCAM and LX2 cells MC009 stained endoplasmic reticulum, mitochondria, Golgi apparatus and lipid droplets, revealing the same intracellular distribution as NRB-AF12, and, at the same time, had both improved photostability and gave a more intense fluorescent signal at lower concentrations than was possible with NRB-AF12, which resulted in a better and finer visualization of intracellular structures. Furthermore, MC009 was effective in cellular labeling in both living and fixed cells. At the concentration used to stain the cells, MC009 did not show any cytotoxic effect and did not affect the regular progression of cell cycle and division. Conclusions: This study demonstrates that the distribution of fluorescently labeled NRB is not affected by the type of fluorophore attached to the parent compound, supporting the idea that the localization of the fluorescent derivatives may reasonably reflect that of the parent compound. In addition, we observed a marked improvement in the fluorescent properties of BODIPY FL-conjugated NRB (MC009) over its NBD-derived counterpart (NRB-AF12), confirming NRB as a scaffold for the development of new, high performance, non-toxic fluorescent probes for the labeling of intracellular structures in both living and fixed cells.

7.
Front Pharmacol ; 7: 315, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27721792

RESUMO

Norbormide (NRB) is a unique compound that acts directly on rat vascular myocytes to trigger a contractile process, through an as yet unknown mechanism, which results in the selective contraction of rat peripheral arteries. To gain insight into the mechanisms involved in NRB rat-selective activity, we investigated the subcellular distribution of NRB-AF12, a nitrobenzoxadiazole (NBD)-derivative of NRB, in living NRB-sensitive and NRB-insensitive cells. In both cell types, NRB-AF12 localized to the endoplasmic reticulum (ER), Golgi apparatus, mitochondria, lysosomes, and endosomes; however, in NRB-sensitive cells, the fluorescence also extended to the plasma membrane. NRB-AF12 was rapidly internalized into the cells, could easily be washed out and then reloaded back into the same cells, all with a high degree of reproducibility. Cells exposed for 24 h to NRB-AF12 did not show apparent signs of toxicity, even at concentrations of the dye (10 µM) much higher than those required for fluorescence labeling (500 ηM). The distribution pattern of NRB-AF12 fluorescence was near identical to that of ER-Tracker® (Er-Tr), a fluorescent derivative of glibenclamide, a known KATP channel blocker. Displacement tests did not demonstrate, but at the same time did not rule out the possibility of a common target for ER-Tr, NRB-AF12, NRB, and glibenclamide. On the basis of these results we hypothesize a common target site for NRB-AF12 and ER-Tr, and a similar target profile for NRB and glibenclamide, and propose NRB-AF12 as an alternative fluorescence probe to ER-Tracker. Furthermore, NRB-based fluorescence derivatives could be designed to selectively label single cellular structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...