Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Nutr Res ; 60: 30472, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27756449

RESUMO

BACKGROUND: Edible microalgae are marine or fresh water mesophilic species. Although the harvesting of microalgae offers an abundance of opportunities to the food and pharmaceutical industries, the possibility to use extremophilic microalgae as a food source for animals is not well-documented. OBJECTIVE: We studied the effects of dietary supplementation of a powdered form of the acidophilic microalga Coccomyxa onubensis on growth and health parameters of laboratory rats. METHOD: Four randomly organized groups of rats (n=6) were fed a standard diet (Diet 1, control) or with a diet in which 0.4% (Diet 2), 1.25% (Diet 3), or 6.25% (Diet 4) (w/w) of the standard diet weight was substituted with dried microalgae powder, respectively. The four groups of animals were provided ad libitum access to feed for 45 days. RESULTS: C. onubensis biomass is rich in protein (44.60% of dry weight) and dietary fiber (15.73%), and has a moderate carbohydrate content (24.8%) and a low lipid content (5.4%) in which polyunsaturated fatty acids represent 65% of the total fatty acid. Nucleic acids are present at 4.8%. No significant difference was found in growth rates or feed efficiency ratios of the four groups of rats. Histological studies of liver and kidney tissue revealed healthy organs in control and C. onubensis-fed animals, while plasma hematological and biochemical parameters were within healthy ranges for all animals. Furthermore, animals fed a microalgae-enriched diet exhibited a statistically significant decrease in both blood cholesterol and triglyceride levels. The blood triglyceride content and very low density lipoprotein-cholesterol levels decreased by about 50% in rats fed Diet 4. CONCLUSIONS: These data suggest that C. onubensis may be useful as a food supplement for laboratory animals and may also serve as a nutraceutical in functional foods. In addition, microalgae powder-supplemented diets exerted a significant hypocholesterolemic and hypotriglyceridemic effect in animals.

2.
J Phycol ; 48(3): 607-14, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27011076

RESUMO

A heavy-metal-resistant, carotenoid-enriched novel unicellular microalga was isolated from an acidic river in Huelva, Spain. The isolated ribosomal 18S subunit rDNA sequence showed homology with known sequences from green microalgae, the closest sequence (98% homology) belonging to the genus Coccomyxa. The isolated microalga therefore was an up to now uncultured microalga. The microalga was isolated from Tinto River area (Huelva, Spain), an acidic river that exhibits very low pH (1.7-3.1) with high concentrations of sulfuric acid and heavy metals, including Fe, Cu, Mn, Ni, and Al. Electron micrographs show that the microalga contains a large chloroplast with a presence of lipid droplets, an increased number of starch bodies as well as electron-dense deposits and plastoglobules, the last observed only in iron-exposed cells. Unlike other acidophile microalgae, the isolated microalga showed high growth rates when cultivated photoautotrophycally (up to 0.6 d(-1) ) in a suitable culture medium prepared at our laboratory. The growth was shown to be iron dependent. When the microalga is grown in fluidized bed reactors, the high growth rates resulted in unexpectedly high productivities for being a microalga that naturally grows in acidic environments (0.32 g·L(-1) ·d(-1) ). The microalga also grows optimally on reduced carbon sources, including glucose and urea, and at an optimal temperature of 35°C. The alga pigment profile is particularly rich in carotenoids, especially lutein, suggesting that the microalga might have potential for antioxidant production, namely, xanthophylls.

3.
Mar Drugs ; 9(3): 319-33, 2011 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-21556162

RESUMO

Carotenoids are the most common pigments in nature and are synthesized by all photosynthetic organisms and fungi. Carotenoids are considered key molecules for life. Light capture, photosynthesis photoprotection, excess light dissipation and quenching of singlet oxygen are among key biological functions of carotenoids relevant for life on earth. Biological properties of carotenoids allow for a wide range of commercial applications. Indeed, recent interest in the carotenoids has been mainly for their nutraceutical properties. A large number of scientific studies have confirmed the benefits of carotenoids to health and their use for this purpose is growing rapidly. In addition, carotenoids have traditionally been used in food and animal feed for their color properties. Carotenoids are also known to improve consumer perception of quality; an example is the addition of carotenoids to fish feed to impart color to farmed salmon.


Assuntos
Carotenoides/farmacologia , Suplementos Nutricionais , Ração Animal , Animais , Carotenoides/metabolismo , Cor , Humanos , Fotossíntese , Oxigênio Singlete/química
4.
J Ind Microbiol Biotechnol ; 38(1): 167-77, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20811803

RESUMO

Cultivation of extremophile microorganisms has attracted interest due to their ability to accumulate high-value compounds. Chlamydomonas acidophila is an acidophile green microalga isolated by our group from Tinto River, an acidic river that flows down from the mining area in Huelva, Spain. This microalga accumulates high concentrations of lutein, a very well-known natural antioxidant. The aim of this study is to assess use of different carbon sources (CO(2), glucose, glycerol, starch, urea, and glycine) for efficient growth of and carotenoid production by C. acidophila. Our results reveal that growth of the microalga on different carbon sources resulted in different algal biomass productivities, urea being as efficient as CO(2) when used as sole carbon source (~20 g dry biomass m(-2) day(-1)). Mixotrophic growth on glucose was also efficient in terms of biomass production (~14 g dry biomass m(-2) day(-1)). In terms of carotenoid accumulation, mixotrophic growth on urea resulted in even higher productivity of carotenoids (mainly lutein, probably via α-carotene) than obtained with photoautotrophic cultures (70% versus 65% relative abundance of lutein, respectively). The accumulated lutein concentrations of C. acidophila reported in this work (about 10 g/kg dry weight, produced in batch systems) are among the highest reported for a microalga. Glycerol and glycine seem to enhance ß-carotene biosynthesis, and when glycine is used as carbon source, zeaxanthin becomes the most accumulated carotenoid in the microalga. Strategies for production of lutein and zeaxanthin are suggested based on the obtained results.


Assuntos
Carbono/metabolismo , Chlamydomonas/metabolismo , Meios de Cultura/metabolismo , Luteína/biossíntese , Xantofilas/biossíntese , Biomassa , Carotenoides/biossíntese , Chlamydomonas/crescimento & desenvolvimento , Glicerol/metabolismo , Zeaxantinas , beta Caroteno/biossíntese
5.
Mar Biotechnol (NY) ; 13(3): 366-75, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20640472

RESUMO

Nannochloropsis, a green microalga, is a source for commercially valuable compounds as extensively described and, in particular, is recognised as a good potential source of eicosapentaenoic acid (20:5ϖ3), an important polyunsaturated fatty acid for human consumption for prevention of several diseases. Climate change might include variation in the ultraviolet (UV) levels as one of the consequences derived from the anthropogenic activity. This paper shows the response of Nannochloropsis cultures exposed for 7 days to UV-A (320-400 nm) added to photosynthetically active radiation (PAR; 400-700 nm). Growth rates and photosynthetic activity were assessed to determine the impact of UV-A increased levels on the cell growth and basic metabolism activity. Xanthophyll pigments (zeaxanthin and violaxanthin), carotenoids (canthaxanthin and ß-carotene) and polyunsaturated fatty acids (myristic, palmitic, palmitoleic, arachidonic and eicosapentaenoic acids) were measured for assessing the antioxidant response of the microalgae to added UV-A radiation to PAR. The results show that the modulated use of UV-A radiations can lead to increased growth rates, which are sustained in time by an increased light transduction activity. The expected antioxidant response to the incident UV-A radiation consisted of increases in zeaxanthin and ß-carotene contents--synthesis of antioxidant carotenoids-and increases in the saturated fatty acids to polyunsaturated fatty acids ratio. The results suggest that modulated UV-A radiation can be used as a tool to stimulate value molecules accumulation in microalgae through an enhanced both light transduction process and antioxidant response, while sustaining cell growth.


Assuntos
Ácidos Graxos Insaturados/biossíntese , Fotossíntese/efeitos da radiação , Estramenópilas/efeitos da radiação , Raios Ultravioleta , Xantofilas/metabolismo , Contagem de Células , Cromatografia Gasosa , Cromatografia Líquida de Alta Pressão , Oxigênio/metabolismo , Fotossíntese/fisiologia , Estramenópilas/crescimento & desenvolvimento , Estramenópilas/metabolismo
6.
J Biosci Bioeng ; 108(1): 47-51, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19577191

RESUMO

beta-carotene is an antioxidant molecule of commercial value that can be naturally produced by certain microalgae that mostly belong to the genus Dunaliella. So far, nitrogen starvation has been the most efficient condition for enhancing beta-carotene accumulation in Dunaliella. However, while nitrogen starvation promotes beta-carotene accumulation, the cells become non-viable; consequently under such conditions, continuous beta-carotene production is limited to less than 1 week. In this study, the use of UV-A radiation as a tool to enhance long-term beta-carotene production in Dunaliella bardawil cultures was investigated. The effect of UV-A radiation (320-400 nm) added to photosynthetically active radiation (PAR, 400-700 nm) on growth and carotenoid accumulation of D. bardawil in a laboratory air-fluidized bed photobioreactor was studied. The results were compared with those from D. bardawil control cultures incubated with PAR only. The addition of 8.7 W.m(-2) UV-A radiation to 250 Wm(-2) PAR stimulated long-term growth of D. bardawil. Throughout the exponential growth period the UV-A irradiated cultures showed enhanced carotenoid accumulation, mostly as beta-carotene. After 24 days, the concentration of beta-carotene in UV-A irradiated cultures was approximately two times that of control cultures. Analysis revealed that UV-A clearly induced major accumulation of all-trans beta-carotene. In N-starved culture media, beta-carotene biosynthesis in UV-A irradiated cultures was stimulated. We conclude that the addition of UV-A to PAR enhances carotenoid production processes, specifically all-trans beta-carotene, in D. bardawil cells without negative effects on cell growth.


Assuntos
Reatores Biológicos , Eucariotos/efeitos da radiação , Raios Ultravioleta , beta Caroteno/biossíntese , Cromatografia Líquida de Alta Pressão , Eucariotos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...