Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pept Sci ; : e3609, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676397

RESUMO

Peptide dhvar4, derived from the active domain of our salivary peptide histatin 5, bears a Phe residue in the middle of its hydrophilic face when folded into an α-helix. We then synthesized an analog with this Phe replaced by Lys and two analogs preserving Phe but bearing two and three α-aminoisobutyric acid (Aib) residues to stabilize the helical structure. The aim of this design was to verify which of the two features is more favorable to the biological activity. We performed a conformational study by means of circular dichroism and nuclear magnetic resonance, made antibacterial tests, and assessed the stability of the peptides in human serum. We observed that amphiphilicity is more important than helix stability, provided a peptide can adopt a helical conformation in a membrane-mimetic environment.

2.
Biophys Chem ; 300: 107060, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37336097

RESUMO

Antimicrobial peptides (AMPs) represent a promising class of compounds to fight resistant infections. They are commonly thought to kill bacteria by perturbing the permeability of their cell membranes. However, bacterial killing requires a high coverage of the cell surface by bound peptides, at least in the case of cationic and amphipathic AMPs. Therefore, it is conceivable that peptide accumulation on the bacterial membranes might interfere with vital cellular functions also by perturbing bilayer dynamics, a hypothesis that has been termed "sand in the gearbox". Here we performed a systematic study of such possible effects, for two representative peptides (the cationic cathelicidin PMAP-23 and the peptaibol alamethicin), employing fluorescence and NMR spectroscopies. These approaches are commonly applied to characterize lipid order and dynamics, but sample different time-scales and could thus report on different membrane properties. In our case, fluorescence anisotropy measurements on liposomes labelled with probes localized at different depths in the bilayer showed that both peptides perturb membrane fluidity and order. Pyrene excimer-formation experiments showed a peptide-induced reduction in lipid lateral mobility. Finally, laurdan fluorescence indicated that peptide binding reduces water penetration below the headgroups region. Comparable effects were observed also in fluorescence experiments performed directly on live bacterial cells. By contrast, the fatty acyl chain order parameters detected by deuterium NMR spectroscopy remained virtually unaffected by addition of the peptides. The apparent discrepancy between the two techniques confirms previous sporadic observations and is discussed in terms of the different characteristic times of the two approaches. The perturbation of membrane dynamics in the ns timescale, indicated by the multiple fluorescence approaches reported here, could contribute to the antimicrobial activity of AMPs, by affecting the function of membrane proteins, which is strongly dependent on the physicochemical properties of the bilayer.


Assuntos
Peptídeos Antimicrobianos , Lipossomos , Membrana Celular/metabolismo , Bicamadas Lipídicas/química , Lipídeos/química , Espectroscopia de Ressonância Magnética
3.
J Pept Sci ; 29(8): e3476, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36603599

RESUMO

The results of classifying into various types the 68 examples of isolated α-turns in the X-ray diffraction crystal structures of peptides documented in the literature are presented and discussed in this review article. α-Turns characterized by the trans disposition of all ω torsion angles are common for the backbone linear peptides investigated. In contrast, the cis arrangement of the N-terminal (ωi + 1 ) torsion angle, among those generated by the three residues internal to the α-turn, is a peculiar feature of 65% of the cyclic peptides. Among linear and cyclic peptides featuring the all-trans disposition of the ω torsion angles, only one third of the α-turns display φ,ψ values not too far from those characterizing regular α-helices. In general, our findings, taken together, suggest that a significant conformational diversity is compatible with the formation of an intramolecularly H-bonded C13 -member pseudocycle (α-turn) in linear and cyclic peptides.


Assuntos
Peptídeos Cíclicos , Peptídeos , Estrutura Secundária de Proteína , Peptídeos/química , Difração de Raios X , Ligação de Hidrogênio , Conformação Proteica
4.
J Pept Sci ; 29(8): e3479, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36652104

RESUMO

Peptaibols are naturally occurring, antimicrobial peptides endowed with well-defined helical conformations and resistance to proteolysis. Both features stem from the presence in their sequence of several, Cα -tetrasubstituted, α-aminoisobutyric acid (Aib) residues. Peptaibols interact with biological membranes, usually causing their leakage. All of the peptaibol-membrane interaction mechanisms proposed so far begin with peptide aggregation or accumulation. The long-length alamethicin, the most studied peptaibol, acts by forming pores in the membranes. Conversely, the carpet mechanism has been claimed for short-length peptaibols, such as trichogin. The mechanism of medium-length peptaibols is far less studied, and this is partly due to the difficulties of their synthesis. They are believed to perturb membrane permeability in different ways, depending on the membrane properties. The present work focuses on pentadecaibin, a recently discovered, medium-length peptaibol. In contrast to the majority of its family members, its sequence does not comprise hydroxyprolines or prolines, and its helix is not kinked. A reliable and effective synthesis procedure is described that allowed us to produce also two shorter analogs. By a combination of techniques, we were able to establish a 3D-structure-activity relationship. In particular, the membrane activity of pentadecaibin heavily depends on the presence of three consecutive Aib residues that are responsible for the clear, albeit modest, amphiphilic character of its helix. The shortest analog, devoid of two of these three Aib residues, preserves a well-defined helical conformation, but not its amphipathicity, and loses almost completely the ability to cause membrane leakage. We conclude that pentadecaibin amphiphilicity is probably needed for the peptide ability to perturb model membranes.


Assuntos
Alameticina , Peptaibols , Peptaibols/análise , Peptaibols/química , Peptaibols/metabolismo , Alameticina/análise , Alameticina/química , Alameticina/metabolismo , Membrana Celular/química , Conformação Molecular , Transporte Biológico , Antibacterianos/farmacologia , Antibacterianos/química
5.
Molecules ; 27(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36144860

RESUMO

Despite the fact that peptide conjugates with a pendant ferrocenyl (Fc) have been widely investigated, bis-ferrocenyl end-capped peptides are rarely synthetized. In this paper, in addition to the full characterization of the Fc-CO-[L-Dap(Boc)]n-NH-Fc series, we report a comparison of the three series of bis-ferrocenyl homopeptides synthesized to date, to gain insights into the influence of α-amino isobutyric (Aib), 2,3-diamino propionic (Dap) and Cα,ß-didehydroalanine (ΔAla) amino acids on the peptide secondary structure and on the ferrocene redox properties. The results obtained by 2D NMR analysis and X-ray crystal structures, and further supported by electrochemical data, evidence different behaviors depending on the nature of the amino acid; that is, the formation of 310-helices or fully extended (2.05-helix) structures. In these foldamers, the orientation of the carbonyl groups in the peptide helix yields a macrodipole with the positive pole on the N-terminal amino acid and the negative pole on the C-terminal amino acid, so that oxidation of the Fc moieties takes place more or less easily depending on the orientation of the macrodipole moment as the peptide chain grows. Conversely, the fully extended conformation adopted by ΔAla flat peptides neither generates a macrodipole nor affects Fc oxidation. The utilization as electrochemical and optical (Circular Dichroism) probes of the two terminal Fc groups, bound to the same peptide chain, makes it possible to study the end-to-end effects of the positive charges produced by single and double oxidations, and to evidence the presence "exciton-coupled" CD among the two intramolecularly interacting Fc groups of the L-Dap(Boc) series.


Assuntos
Aminoácidos , Peptídeos , Aminoácidos/química , Dicroísmo Circular , Metalocenos , Oxirredução , Peptídeos/química , Esqueleto
6.
Molecules ; 27(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35807480

RESUMO

The suppression of side reactions is one of the most important objectives in peptide synthesis, where highly reactive compounds are involved. Recently, the violuric acid derivative Oxyma-B was introduced into peptide synthesis protocols as a promising additive to efficiently control the optical purity of the amino acids prone to racemization. However, we discovered a side reaction involving the Beckmann rearrangement of Oxyma-B during the coupling reaction, which compromises the yield and purity of the target peptides. Here, we present the investigation of the mechanism of this rearrangement and the optimization of the coupling reaction conditions to control it. These results can be taken into account for the design of novel efficient oxime-based coupling reagents.


Assuntos
Carbodi-Imidas , Oximas , Sequência de Aminoácidos , Barbitúricos , Oximas/química , Peptídeos/química
7.
Biochim Biophys Acta Biomembr ; 1864(9): 183978, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35659865

RESUMO

Membrane-active peptides are a promising class of antimicrobial and anticancer therapeutics. For this reason, their molecular mechanisms of action are currently actively investigated. By exploiting Electron Paramagnetic Resonance, we study the membrane interaction of two spin-labeled analogs of the antimicrobial and cytotoxic peptide trichogin GA IV (Tri), with opposite bioactivity: Tri(Api8), able to selectively kill cancer cells, and Tri(Leu4), which is completely nontoxic. In our attempt to determine the molecular basis of their different biological activity, we investigate peptide impact on the lateral organization of lipid membranes, peptide localization and oligomerization, in the zwitter-ionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) model membrane We show that, despite their divergent bioactivity, both peptide analogs (i) are membrane-bound, (ii) display a weak tendency to oligomerization, and (iii) do not induce significant lipid rearrangement. Conversely, literature data show that the parent peptide trichogin, which is cytotoxic without any selectivity, is strongly prone to dimerization and affects the reorganization of POPC membranes. Its dimers are involved in the rotation around the peptide helix, as observed at cryogenic temperatures in the millisecond timescale. Since this latter behavior is not observed for the inactive Tri(Leu4), we propose that for short-length peptides as trichogin oligomerization and molecular motions are crucial for bioactivity, and membrane binding alone is not enough to predict or explain it. We envisage that small changes in the peptide sequence that affect only their ability to oligomerize, or their molecular motions inside the membrane, can tune the peptide activity on membranes of different compositions.


Assuntos
Antibacterianos , Bicamadas Lipídicas , Sequência de Aminoácidos , Antibacterianos/farmacologia , Espectroscopia de Ressonância de Spin Eletrônica , Bicamadas Lipídicas/química , Membranas/metabolismo , Marcadores de Spin
8.
ACS Omega ; 7(6): 5154-5165, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35187331

RESUMO

Electron paramagnetic resonance spectroscopy, particularly its pulse technique double electron-electron resonance (DEER) (also termed PELDOR), is rapidly becoming an extremely useful tool for the experimental determination of side chain-to-side chain distances between free radicals in molecules fundamental for life, such as polypeptides. Among appropriate probes, the most popular are undoubtedly nitroxide electron spin labels. In this context, suitable biosynthetically derived, helical regions of proteins, along with synthetic peptides with amphiphilic properties and antibacterial activities, are the most extensively investigated compounds. A strict requirement for a precise distance measurement has been identified in a minimal dynamic flexibility of the two nitroxide-bearing α-amino acid side chains. To this end, in this study, we have experimentally compared in detail the side-chain mobility properties of the two currently most widely utilized residues, namely, Cys(MTSL) and 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC). In particular, two double-labeled, chemically synthesized 20-mer peptide molecules have been adopted as appropriate templates for our investigation on the determination of the model intramolecular separations. These double-Cys(MTSL) and double-TOAC compounds are both analogues of the almost completely rigid backbone peptide ruler which we have envisaged and 3D structurally analyzed as our original, unlabeled compound. Here, we have clearly found that the TOAC side-chain labels are largely more 3D structurally restricted than the MTSL labels. From this result, we conclude that the TOAC residue offers more precise information than the Cys(MTSL) residue on the side chain-to-side chain distance distribution in synthetically accessible peptide molecules.

9.
J Med Chem ; 64(21): 15973-15990, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34714648

RESUMO

We developed a new class of inhibitors of protein-protein interactions of the SHP2 phosphatase, which is pivotal in cell signaling and represents a central target in the therapy of cancer and rare diseases. Currently available SHP2 inhibitors target the catalytic site or an allosteric pocket but lack specificity or are ineffective for disease-associated SHP2 mutants. Considering that pathogenic lesions cause signaling hyperactivation due to increased levels of SHP2 association with cognate proteins, we developed peptide-based molecules with nanomolar affinity for the N-terminal Src homology domain of SHP2, good selectivity, stability to degradation, and an affinity for pathogenic variants of SHP2 that is 2-20 times higher than for the wild-type protein. The best peptide reverted the effects of a pathogenic variant (D61G) in zebrafish embryos. Our results provide a novel route for SHP2-targeted therapies and a tool for investigating the role of protein-protein interactions in the function of SHP2.


Assuntos
Oncogenes , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Domínios de Homologia de src/efeitos dos fármacos , Animais , Sítios de Ligação , Mutação , Ligação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Transdução de Sinais , Peixe-Zebra/embriologia
10.
Biochemistry ; 60(36): 2704-2714, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34463474

RESUMO

In synthetic peptides containing Gly and coded α-amino acids, one of the most common practices to enhance their helical extent is to incorporate a large number of l-Ala residues along with noncoded, strongly foldameric α-aminoisobutyric acid (Aib) units. Earlier studies have established that Aib-based peptides, with propensity for both the 310- and α-helices, have a tendency to form ordered three-dimensional structure that is much stronger than that exhibited by their l-Ala rich counterparts. However, the achiral nature of Aib induces an inherent, equal preference for the right- and left-handed helical conformations as found in Aib homopeptide stretches. This property poses challenges in the analysis of a model peptide helical conformation based on chirospectroscopic techniques like electronic circular dichroism (ECD), a very important tool for assigning secondary structures. To overcome such ambiguity, we have synthesized and investigated a thermally stable 14-mer peptide in which each of the Aib residues of our previously designed and reported analogue ABGY (where B stands for Aib) is replaced by Cα-methyl-l-valine (L-AMV). Analysis of the results described here from complementary ECD and 1H nuclear magnetic resonance spectroscopic techniques in a variety of environments firmly establishes that the L-AMV-containing peptide exhibits a significantly stronger preference compared to that of its Aib parent in terms of conferring α-helical character. Furthermore, being a chiral α-amino acid, L-AMV shows an intrinsic, extremely strong bias for a quite specific (right-handed) screw sense. These findings emphasize the relevance of L-AMV as a more appropriate unit for the design of right-handed α-helical peptide models that may be utilized as conformationally constrained scaffolds.


Assuntos
Aminoácidos/química , Ácidos Aminoisobutíricos/química , Peptídeos/química , Valina/química , Dicroísmo Circular/métodos , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Estrutura Secundária de Proteína
11.
J Med Chem ; 64(15): 10900-10907, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34269584

RESUMO

The design of efficient vascular endothelial growth factor (VEGF) inhibitors is a high-priority research area aimed at the treatment of pathological angiogenesis. Among other compounds, v114* has been identified as a potent VEGF-binding peptide. In order to improve the affinity to VEGF, we built a conformational constrain in its structure. To this aim, Cα-tetrasubstituted amino acid Aib was introduced into the N-terminal tail, peptide loop, or C-terminal helix. NMR studies confirmed the stabilization of the helical conformation in proximity to the Aib residue. We found that the induction of the N-terminal helical structure or stabilization of the C-terminal helix can noticeably increase the peptide affinity to the VEGF. These peptides efficiently inhibited VEGF-stimulated cell proliferation as well. The insertion of the non-proteinogenic Aib residue significantly enhanced the stability of the peptides in the vitreous environment. Thus, these Aib-containing peptides are promising candidates for the design of VEGF inhibitors with improved properties.


Assuntos
Peptídeos/farmacologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Modelos Moleculares , Conformação Molecular , Peptídeos/síntese química , Peptídeos/química , Relação Estrutura-Atividade , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
Chempluschem ; 86(5): 723-730, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33825347

RESUMO

The foldamer field is continuously expanding as it allows to produce molecules endowed with 3D-structures and functions never observed in nature. We synthesized flat foldamers based on the natural, but non-coded, Cα,ß -didehydroalanine α-amino acid, and covalently linked to them two ferrocene (Fc) moieties, as redox probes. These conjugates retain the flat and extended conformation of the 2.05 -helix, both in solution and in the crystal state (X-ray diffraction). Cyclic voltammetry measurements agree with the adoption of the 2.05 -helix, characterized by a negligible dipole moment. Thus, elongated α-peptide stretches of this type are insulators rather than charge conductors, the latter being constituted by peptide α-helices. Also, our homo-tetrapeptide has a N-to-C length of about 18.2 Å, almost double than that (9.7 Å) of an α-helical α-tetrapeptide.

13.
Biochim Biophys Acta Biomembr ; 1863(9): 183585, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33640429

RESUMO

The medium-length peptide Tylopeptin B possesses activity against Gram-positive bacteria. It binds to bacterial membranes altering their mechanical properties and increasing their permeability. This action is commonly related with peptide self-assembling, resulting in the formation of membrane channels. Here, pulsed double electron-electron resonance (DEER) data for spin-labeled Tylopeptin B in palmitoyl-oleoyl-glycero-phosphocholine (POPC) model membrane reveal that peptide self-assembling starts at concentration as low as 0.1 mol%; above 0.2 mol% it attains a saturation-like dependence with a mean number of peptides in the cluster = 3.3. Using the electron spin echo envelope modulation (ESEEM) technique, Tylopeptin B molecules are found to possess a planar orientation in the membrane. In the peptide concentration range between 0.1 and 0.2 mol%, DEER data show that the peptide clusters have tendency of mutual repulsion, with a circle of inaccessibility of radius around 20 nm. It may be proposed that within this radius the peptides destabilize the membrane, providing so the peptide antimicrobial activity. Exploiting spin-labeled stearic acids as a model for free fatty acids (FFA), we found that at concentrations of 0.1-0.2 mol% the peptide promotes formation of lipid-mediated FFA clusters; further increase in peptide concentration results in dissipation of these clusters.


Assuntos
Antibacterianos/química , Peptaibols/química , Fosfatidilcolinas/química , Antibacterianos/síntese química , Espectroscopia de Ressonância de Spin Eletrônica , Peptaibols/síntese química
14.
Biochemistry ; 60(1): 19-30, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33320519

RESUMO

Double electron-electron resonance (DEER, also known as PELDOR) and circular dichroism (CD) spectroscopies were explored for the purpose of studying the specificity of the conformation of peptides induced by their assembly into a self-recognizing system. The E and K peptides are known to form a coiled-coil heterodimer. Two paramagnetic TOAC α-amino acid residues were incorporated into each of the peptides (denoted as K** and E**), and a three-dimensional structural investigation in the presence or absence of their unlabeled counterparts E and K was performed. The TOAC spin-labels, replacing two Ala residues in each compound, are covalently and quasi-rigidly connected to the peptide backbone. They are known not to disturb the native structure, so that any conformational change can easily be monitored and assigned. DEER spectroscopy enables the measurement of the intramolecular electron spin-spin distance distribution between the two TOAC labels, within a length range of 1.5-8 nm. This method allows the individual conformational changes for the K**, K**/E, E**, and E**/K molecules to be investigated in glassy frozen solutions. Our data reveal that the conformations of the E** and K** peptides are strongly influenced by the presence of their counterparts. The results are discussed with those from CD spectroscopy and with reference to the already reported nuclear magnetic resonance data. We conclude that the combined DEER/TOAC approach allows us to obtain accurate and reliable information about the conformation of the peptides before and after their assembly into coiled-coil heterodimers. Applications of this induced fit method to other two-component, but more complex, systems, like a receptor and antagonists, a receptor and a hormone, and an enzyme and a ligand, are discussed.


Assuntos
Dicroísmo Circular/métodos , Óxidos N-Cíclicos/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Fragmentos de Peptídeos/química , Marcadores de Spin , Modelos Moleculares , Estrutura Secundária de Proteína
15.
Macromol Biosci ; 20(12): e2000199, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32852141

RESUMO

A new general method to covalently link a peptide to cotton via thiazolidine ring formation is developed. Three different analogues of an ultrashort antibacterial peptide are synthesized to create an antibacterial fabric. The chemical ligation approach to the heterogeneous phase made up of insoluble cellulose fibers and a peptide solution in water is adapted. The selective click reaction occurs between an N-terminal cysteine on the peptide and an aldehyde on the cotton matrix. The aldehyde is generated on the primary alcohol of glucose by means of the enzyme laccase and the cocatalyst 2,2,6,6-tetramethylpiperidine-1-oxyl. This keeps the pyranose rings intact and may bring a benefit to the mechanical properties of the fabric. The presence of the peptide on cotton is demonstrated through instant colorimetric tests, UV spectroscopy, IR spectroscopy, and X-ray photoelectron spectroscopy analysis. The antibacterial activity of the peptides is maintained even after their covalent attachment to cotton fibers.


Assuntos
Antibacterianos/química , Gossypium/química , Proteínas Citotóxicas Formadoras de Poros/química , Têxteis , Aldeídos/química , Celulose/química , Fibra de Algodão , Cisteína/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/patogenicidade , Humanos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade
16.
J Magn Reson ; 309: 106621, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31669794

RESUMO

In frozen biological media and molecular glasses only restricted motions exist; because of the weakness and disorder of intermolecular bonds these motions may have stochastic nature. Electron spin echo (ESE) spectroscopy of spin-labeled molecules allows detecting their restricted stochastic rotations (stochastic molecular librations). As in molecular disordered media motions may be highly cooperative, it would be desirable to investigate their spectroscopic manifestation also in the systems where cooperative effects would be certainly ruled out. In this work, ESE of spin-labeled molecules adsorbed on inorganic SiO2 surface was investigated in a wide temperature range. The rate of motion-induced spin relaxation was found to become measurable above 130 K, increasing with temperature and attaining then a saturating behavior with a well-defined maximum near 250 K. For two types of molecules differing remarkably in their size and polarity (a small highly-polar nitroxide radical and a large spin-labeled peptide), quite similar results were obtained. This saturating behavior was quantitatively reproduced in simulations within a simple model of jump between two close orientations. Comparison with experiment allowed estimate that at 250 K the correlation time of the motion τc is of the order of several tens of nanoseconds and the angle α between two orientations is around 0.02 rad. As the found saturating behavior is a property of individual motions, for any other molecular system an excess of the spin relaxation rate above the maximum found here for adsorbed molecules may be ascribed to cooperative motions. Comparison with literature data on molecular systems of different origin has shown that effects of cooperativity indeed are present and, moreover, may be very essential.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Processos Estocásticos , Propriedades de Superfície , Simulação por Computador , Congelamento , Micro-Ondas , Movimento (Física) , Dióxido de Silício/química , Marcadores de Spin , Temperatura
17.
Phys Chem Chem Phys ; 21(41): 23217, 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31602454

RESUMO

Correction for 'An EPR study of ampullosporin A, a medium-length peptaibiotic, in bicelles and vesicles' by Marco Bortolus et al., Phys. Chem. Chem. Phys., 2016, 18, 749-760.

18.
Chembiochem ; 20(16): 2125-2132, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31095838

RESUMO

Trichogin is a natural peptide endowed with antimicrobial and antitumor activity. A member of the peptaibol family, trichogin possesses a C-terminal amino alcohol. In the past, this moiety was substituted for a methyl ester for synthetic purposes and it was observed that this apparently slight modification caused significant changes in the peptide bioactivity. With the aim of understanding the reasons behind such observations, a detailed spectroscopic study on a number of trichogin analogues has been performed. Herein, data obtained from synchrotron radiation circular dichroism, NMR spectroscopy, and fluorescence spectroscopy in organic solvents at cryogenic temperatures are compared with those independently acquired by means of EPR spectroscopy at 80 K. It is unambiguously revealed that the presence of a reversible, temperature-driven, screw-sense interconversion from a right- to left-handed helix is determined by the C-terminal capping moiety. Data demonstrate, for the first time, the key role of a C-terminal methyl ester in promoting peptide screw-sense inversion.


Assuntos
Peptaibols/química , Temperatura , Sequência de Aminoácidos , Amino Álcoois/química , Ácidos Carboxílicos/química , Ésteres/química , Conformação Proteica em alfa-Hélice , Relação Estrutura-Atividade
19.
Front Chem ; 7: 170, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30984741

RESUMO

Tumor angiogenesis, essential for cancer development, is regulated mainly by vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs), which are overexpressed in cancer cells. Therefore, the VEGF/VEGFR interaction represents a promising pharmaceutical target to fight cancer progression. The VEGF surface interacting with VEGFRs comprises a short α-helix. In this work, helical oligopeptides mimicking the VEGF-C helix were rationally designed based on structural analyses and computational studies. The helical conformation was stabilized by optimizing intramolecular interactions and by introducing helix-inducing Cα,α-disubstituted amino acids. The conformational features of the synthetic peptides were characterized by circular dichroism and nuclear magnetic resonance, and their receptor binding properties and antiangiogenic activity were determined. The best hits exhibited antiangiogenic activity in vitro at nanomolar concentrations and were resistant to proteolytic degradation.

20.
Front Chem ; 7: 192, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31001518

RESUMO

α,ß2,3-Disteroisomeric foldamers of general formula Boc(S-Ala-ß-2R,3R-Fpg)nOMe or Boc(S-Ala-ß-2S,3S-Fpg)nOMe were prepared from both enantiomers of syn H-2-(2-F-Phe)-h-PheGly-OH (named ß-Fpg) and S-alanine. Our peptides show two appealing features for biomedical applications: the presence of fluorine, attractive for non-covalent interactions, and aryl groups, crucial for π-stacking. A conformational study was performed, using IR, NMR and computational studies of diastereoisomeric tetra- and hexapeptides containing the ß2,3-amino acid in the R,R- and S,S-stereochemistry, respectively. We found that the stability of peptide conformation is dependent on the stereochemistry of the ß-amino acid. Combining S-Ala with ß-2R,3R-Fpg, a stable extended ß-strand conformation was obtained. Furthermore, ß-2R,3R-Fpg containing hexapeptide self-assembles to form antiparallel ß-sheet structure stabilized by intermolecular H-bonds and π,π-interactions. These features make peptides containing the ß2,3-fluoro amino acid very appealing for the development of bioactive proteolytically stable foldameric ß-sheets as modulators of protein-protein interaction (PPI).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...